scholarly journals Ultimate Capacity Analysis and Determination of the Position of Failure Surface for Uplift Piles

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Qian Su ◽  
Xiaoxi Zhang ◽  
Pingbao Yin ◽  
Wenhui Zhao

Ultimate capacity and failure surface position of uplift piles are dependent on soil parameters. In this paper, the horizontal slice method is used to discuss the relation among the ultimate uplift capacity, the failure surface position, and soil parameters with Mohr-Coulomb failure criterion. According to the limit equilibrium analysis, the ultimate uplift capacity is calculated by dividing soil around the pile into slices with considering the potential failure surface as a group of several sectional planes. Then the multivariate function used to calculate ultimate capacity is established and optimized by the sequential quadratic programming. Through the numerical calculation and comparison with the previous research, the results show that the method is reasonable and effective and can be used to determine the failure surface and the magnitude of the ultimate capacity of uplift piles.

2005 ◽  
Vol 42 (1) ◽  
pp. 263-271 ◽  
Author(s):  
Deepankar Choudhury ◽  
K S Subba Rao

Uplift capacities of inclined strip anchors in soil with a horizontal ground surface are obtained under seismic conditions. Limit equilibrium approaches with a logarithm-spiral failure surface and pseudostatic seismic forces are adopted in the analysis. The results are presented in the form of seismic uplift capacity factors as functions of anchor inclination, embedment ratio, angle of internal friction of the soil, and horizontal and vertical seismic acceleration coefficients. The uplift capacity factors are worked out separately for cohesion, surcharge, and density components. Use of the principle of superposition for calculating anchor uplift capacity is validated. The vertical seismic acceleration coefficient always reduces the uplift capacity, whereas the horizontal seismic acceleration coefficient reduces the uplift capacity in most cases. The roles of anchor embedment ratio, soil friction angle, and anchor inclination in determination of the seismic uplift capacity are also discussed. Comparisons of the proposed method with available theories in the seismic case are also presented. The present study gives the minimum seismic uplift capacity factors compared with the existing theory.Key words: seismic uplift capacity factors, inclined strip anchors, limit equilibrium, pseudostatic, c–ϕ soil.


2014 ◽  
Vol 5 (2) ◽  
pp. 37-43 ◽  
Author(s):  
Sima Ghosh

In this present paper, a circular failure surface passing through the toe is assumed for a homogeneous soil, and the Fellenius line is used to locate the centre of the most critical circle. Using limit equilibrium analysis under the influence of static forces such as weight of potential slide mass and surcharge along with the pseudo-static seismic forces are considered to obtain the factor of safety of the slopes. Factor of safety is found through the application of force equilibrium. The effects of variation of different parameters like slope angle (i), soil friction angle (F) and seismic acceleration coefficients both in the horizontal and vertical directions (kh and kv respectively) on the factor of safety are presented. Finally, the present results are compared to the existing solutions available in literature and found to give minimum values of factor of safety using the present approach for seismic slope stability analysis.


2020 ◽  
Author(s):  
Chien Liu ◽  
Cheng-Han Lin ◽  
Ching Hung

<p>Situated within a subtropical and mountainous region where frequent typhoons hit, rainfall-induced landslides have been a critical issue in Taiwan. On September 29, 2001, due to the torrential rainfall brought by the Typhoon Nari and Lekima, a downslope in Taipei National University of the Arts failed. The sliding source hit and severely damaged the Tao-Yuan junior high school. Before the 2001 Taipei National University of the Arts landslide, several landslides had already occurred in this landslide-prone region. In this study, a two-dimensional (2D) slope stability analysis, based on the limit equilibrium analysis (LEA), is conducted to analyze the 2001 Taipei National University of the Arts landslide. LEA has been the most popular and widely used technique given that it can estimate the factor of safety of a slope with some preliminary site investigation information. By comparing the failure surface and factor of safety (FOS) suggested in the post-disaster report [1], reasonable soil parameters, which are in an agreement with the experimental results [1], can be obtained through the study. The obtained soil parameters can later be applied to coupled transient unsaturated seepage-stress finite element analysis (FEA) [2] that will help practical engineers to understand the onset of failure in the future study.</p><p> </p><p>REFERENCE</p><ol><li>Taiwan Professional Geotechnical Engineers Association. (2001). National Taipei University of the Arts tennis court down slope failure reason identification and long-term remediation plan suggestion work report.</li> <li>Hung, C., Liu, C. H., & Chang, C. M. (2018). Numerical investigation of rainfall-induced landslide in mudstone using coupled finite and discrete element analysis. Geofluids, 2018.</li> </ol>


2007 ◽  
Vol 01 (04) ◽  
pp. 311-328 ◽  
Author(s):  
DEEPANKAR CHOUDHURY ◽  
K. S. SUBBA RAO

Generalized solutions for uplift capacity of inclined shallow strip anchors embedded in general c–ϕ soils with inclined slope carrying a uniform surcharge is developed in this paper for seismic condition. The individual effects of unit weight, surcharge and cohesion components on the computation of uplift capacity of anchors are considered. Limit equilibrium method with logspiral failure surface is adopted in the analysis and the effects of seismic forces are considered as pseudo-static forces. The results have been presented in the form of seismic uplift capacity factors as functions of anchor inclination, ground inclination, embedment ratio, soil friction angle and seismic acceleration coefficients both in the horizontal and vertical directions. Both the seismic accelerations change significantly the uplift capacity of anchors. Effect of the vertical seismic acceleration coefficient has been found to always reduce the uplift capacity whereas the effect of horizontal seismic acceleration coefficient has been found to reduce the uplift capacity in most of the cases. Results are presented in graphical and tabular forms. Estimation of error while using the principle of superposition to compute the seismic uplift capacity is also conducted. A comparative study between the present theory and available results in literature shows the merits and requirement of the present analysis.


2015 ◽  
Vol 52 (9) ◽  
pp. 1241-1254 ◽  
Author(s):  
Mrunal A. Patki ◽  
J.N. Mandal ◽  
D.M. Dewaikar

A numerical method is developed to evaluate the passive earth pressure coefficients for an inclined rigid retaining wall resting against a horizontal cohesionless backfill. A composite failure surface comprises a log spiral, and its tangent is assumed in the present study. The unique failure surface is identified based on the limit equilibrium approach coupled with the Kötter equation (published in 1903). Force equilibrium conditions are used to evaluate the magnitude of the passive thrust, whereas the moment equilibrium condition is employed to determine the location of the passive thrust. The distinctive feature of the present study is that no assumption is required to be made regarding the point of application of the passive thrust, which would otherwise be an essential criterion with respect to the several limit equilibrium based investigations available in the literature. The passive earth pressure coefficients, Kpγ, are evaluated for various values of soil frictional angle [Formula: see text], wall frictional angle δ, and wall inclination angle λ, and compared with the existing results.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Zuofei Yan ◽  
Yahong Deng ◽  
Jia He ◽  
You Xuan ◽  
Wei Wu

Reasonable determination of the magnitude and distribution of dynamic earth pressure is one of the major challenges in the seismic design of retaining walls. Based on the principles of pseudodynamic method, the present study assumed that the critical rupture surface of backfill soil was a composite curved surface which was in combination with a logarithmic spiral and straight line. The equations for the calculation of seismic total active thrusts on retaining walls were derived using limit equilibrium theory, and earth pressure distribution was obtained by differentiating total active thrusts. The effects of initial phase, amplification factor, and soil friction angle on the distribution of seismic active earth pressure have also been discussed. Compared to pseudostatic and pseudodynamic methods for the determination of planar failure surface forms, the proposed method receives a bit lower value of seismic active earth pressures.


1989 ◽  
Vol 26 (4) ◽  
pp. 595-603 ◽  
Author(s):  
A. Afrouz ◽  
F.P. Hassani ◽  
R. Ucar

A simplified method of predicting the shape and location of the potential failure surface in steep rock slopes is suggested. The 1988 updated Hoek and Brown failure criterion is used with Priest and Brown m and s values and Bieniawski's jointed rock mass classification system. This method is demonstrated by an application to the design of slope reinforcement by rock anchoring and by a case study. The validity of the method is assessed by reference to the variational calculus approach, using the linear Mohr–Coulomb failure criterion. Key words: benches, bench design, bench anchoring, quarrying, slope stability, ground control, rock mass rating.


2017 ◽  
Vol 14 (1) ◽  
pp. 53
Author(s):  
Arwan Apriyono ◽  
Sumiyanto Sumiyanto ◽  
Nanang Gunawan Wariyatno

Gunung Tugel is an area that located Patikraja Region, Southern Banyumas. Thetopography of the area is mostly mountainous with a slope that varies from flat to steep. Thiscondition makes to many areas of this region potentially landslide. In 2015, a landslideoccurred in Jalan Gunung Tugel. The Landslide occurred along 70 meters on the half of theroad and causing traffic Patikraja-Purwokerto disturbed. To repair the damage of the road andavoid further landslides, necessary to analyze slope stability. This study is to analyze landslidereinforcement that occurred at Gunung Tugel and divides into 3 step. The first step is fieldinvestigation to determine the condition of the location and dimensions of landslides. Thesecond step is to know the soil parameters and analyzes data were obtained from the field. Andthe final step is analyzed of the landslide reinforcement by using data obtained from thepreceding step. In this research, will be applied three variations of reinforcement i.e. retainingwall, pile foundation and combine both of pile foundations and retaining wall. Slope stabilityanalysis was conducted using limit equilibrium method. Based on the analysis conducted onthe three variations reinforcement, combine both of pile foundations and retaining wall morerecommended. Application of and combine both of pile foundations and retaining wall is themost realistic option in consideration of ease of implementation at the field. From thecalculations have been done, in order to achieve stable conditions need retaining wall withdimensions of 2 meters high with 2,5 meters of width. DPT is supported by two piles of eachcross-section with 0.3 meters of diameter along 10 meters with 1-meter in space. Abstrak: Gunung Tugel adalah salah satu daerah yang terletak di Kecamatan PatikrajaKabupaten Banyumas bagian selatan. Kondisi topografi daerah tersebut sebagian besar berupapegunungan dengan kemiringan yang bervariasi dari landai sampai curam. Hal inimenyebabkan banyak daerah di wilayah Gunung Tugel yang berpotensi terjadi bencana tanahlongsor. Pada tahun 2015, peristiwa longsor kembali terjadi di ruas Jalan Gunung Tugel.Kelongsoran yang terjadi sepanjang 70 meter pada separuh badan jalan tersebut menyebabkanarus lalu lintas patikraja-purwokerto menjadi terganggu. Untuk memperbaiki kerusakan jalandan mencegah kelongsoran kembali, diperlukan analisis perkuatan tanah terhadap lerengtersebut. Studi analisis penanggulangan kelongsoran jalan yang terjadi di Gunung Tugel inidilakukan dengan tiga tahapan. Tahapan pertama adalah investigasi lapangan untukmengetahui kondisi lokasi dan dimensi longsor serta mengambil sampel tanah di lapangan.Tahap kedua adalah melakukan pengujian parameter tanah dan analisis data yang diperolehdari lapangan. Tahapan yang terakhir adalah analisis penanggulangan longsor denganmenggunakan data yang diperoleh dari tahapan sebelumnya. Pada penelitan ini, akanditerapkan tiga variasi perkuatan lereng yaitu dinding penahan tanah (DPT), turap dan DPTyang dikombinasikan dengan pondasi tiang. Analisis stabilitas lereng dilakukan dengan metodekeseimbangan batas. Berdasarkan hasil analisis yang dilakukan terhadap ketiga variasiperkuatan, DPT dengan kombinasi tiang pancang lebih direkomendasikan. Penerapan DPTyang dikombinasikan dengan minipile merupakan pilihan yang paling realistis denganpertimbangan tingkat kemudahan pelaksanaan di lapangan. Dari perhitungan yang telahdilakukan, untuk mencapai kondisi stabil diperlukan DPT dengan dimensi tinggi 2 meterdengan lebar bawah 2,5 meter. DPT tersebut ditopang oleh dua tiang tiap penampangmelintang dengan diameter 0,3 meter sepanjang 10 meter dengan jarak antar tiang 1 meter.kata kunci: tanah longsor, perkuatan tanah, metode keseimbangan batas


2021 ◽  
Vol 11 (9) ◽  
pp. 3768
Author(s):  
Fengqing Li ◽  
Isakbek Torgoev ◽  
Damir Zaredinov ◽  
Marina Li ◽  
Bekhzod Talipov ◽  
...  

Central Asia is one of the most challenged places, prone to suffering from various natural hazards, where seismically triggered landslides have caused severe secondary losses. Research on this problem is especially important in the cross-border Mailuu-Suu catchment in Kyrgyzstan, since it is burdened by radioactive legacy sites and frequently affected by earthquakes and landslides. To identify the landslide-prone areas and to quantify the volume of landslide (VOL), Scoops3D was selected to evaluate the slope stability throughout a digital landscape in the Mailuu-Suu catchment. By performing the limit equilibrium analysis, both of landslide susceptibility index (LSI) and VOL were estimated under five earthquake scenarios. The results show that the upstream areas were more seismically vulnerable than the downstream areas. The susceptibility level rose significantly with the increase in earthquake strength, whereas the VOL was significantly higher under the extreme earthquake scenario than under the other four scenarios. After splitting the environmental variables into sub-classes, the spatial variations of LSI and VOL became more clear: the LSI reduced with the increase in elevation, slope, annual precipitation, and distances to faults, roads, and streams, whereas the highest VOL was observed in the areas with moderate elevations, high precipitation, grasslands, and mosaic vegetation. The relative importance analysis indicated that the explanatory power reduced with the increase in earthquake level and it was significant higher for LSI than for VOL. Among nine environmental variables, the distance to faults, annual precipitation, slope, and elevation were identified as important triggers of landslides. By a simultaneous assessment of both LSI and VOL and the identification of important triggers, the proposed modelling approaches can support local decision-makers and householders to identify landslide-prone areas, further design proper landslide hazard and risk management plans and, consequently, contribute to the resolution of transboundary pollution conflicts.


Sign in / Sign up

Export Citation Format

Share Document