scholarly journals Herbal Plant Synthesis of Antibacterial Silver Nanoparticles by Solanum trilobatum and Its Characterization

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. Vanaja ◽  
K. Paulkumar ◽  
G. Gnanajobitha ◽  
S. Rajeshkumar ◽  
C. Malarkodi ◽  
...  

Green synthesis method of nanomaterials is rapidly growing in the nanotechnology field; it replaces the use of toxic chemicals and time consumption. In this present investigation we report the green synthesis of silver nanoparticles (AgNPs) by using the leaf extract of medicinally valuable plant Solanum trilobatum. The influence of physical and chemical parameters on the silver nanoparticle fabrication such as incubation time, silver nitrate concentration, pH, and temperature is also studied in this present context. The green synthesized silver nanoparticles were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray (EDX), and transmission electron microscope (TEM). The SEM and TEM confirm the synthesis of spherical shape of nanocrystalline particles with the size range of 2–10 nm. FTIR reveals that the carboxyl and amine groups may be involved in the reduction of silver ions to silver nanoparticles. Antibacterial activity of synthesized silver nanoparticles was done by agar well diffusion method against different pathogenic bacteria. The green synthesized silver nanoparticles can be used in the field of medicine, due to their high antibacterial activity.

2021 ◽  
Vol 13 (7) ◽  
pp. 1304-1309
Author(s):  
Hamed A. Ghramh ◽  
Rahmah N. Al-Qthanin ◽  
Zubair Ahmad ◽  
Essam H. Ibrahim ◽  
Mona Kilany ◽  
...  

ABSTRACTThis article reports on the silver nanoparticles (AaAgNPs) that were green-synthesized by using Artemisia annua L. extract (AaExt) and their collective biological applications. Active biomolecules in the extract and extract containing AgNPs were characterized using Fourier-transform-infrared-spectroscopy (FTIR) and AgNPs were monitored by UV/vis spectroscopy and SEM (scanning electron microscopy) analysis. The size of the particle is around 100 nm. The antibacterial activity was measured by the disk diffusion method against the Gram-negative/positive pathogenic bacteria. The extract and extract containing AgNPs showed a significant antibacterial activity. Cytotoxic potential of the synthesized AgNPs was analyzed against the rat splenocytes. The results showed that there were cytotoxic effects of A. annua leaves extract but stimulatory effects when the extract contained AgNPs on normal splenocytes. Extract of A. annua showed very little increase in liver enzymes. Regarding the larvicidal activity, the extract containing AgNPs was more effective than the crude leaves extract against 4th instar larvae of Culex pipiens (LC50 = 171.378 ppm) compared to the plant extract (LC50 = 5389.726 ppm) by about 31.449 folds.


2016 ◽  
Author(s):  
Patcharaporn Tippayawat ◽  
Nutthakritta Phromviyo ◽  
Parichart Boueroy ◽  
Apiwat Chompoosor

Background: There is worldwide interest in silver nanoparticles (AgNPs) synthesized by various chemical reactions for use in applications exploiting their antibacterial activity, even though these processes exhibit a broad range of toxicity in vertebrates and invertebrates alike. To avoid the chemical toxicity, biosynthesis (green synthesis) of metal nanoparticles is proposed as a cost-effective and environmental friendly alternative. Aloe vera leaf extract is a medicinal agent with multiple properties including an antibacterial effect. Moreover the constituents of aloe vera leaves include lignin, hemicellulose, and pectins which can be used in the reduction of silver ions to produce as AgNPs@aloe vera (AgNPs@AV) with antibacterial activity. Methods: AgNPs were prepared by an eco-friendly hydrothermal method using an aloe vera plant extract solution as both a reducing and stabilizing agent. AgNPs@AV were characterized using XRD and SEM. Additionally, an agar well diffusion method was used to screen for antimicrobial activity. MIC and MBC were used to correlate the concentration of AgNPs@AV its bactericidal effect. SEM was used to investigate bacterial inactivation. Then the toxicity with human cells was investigated using an MTT assay. Results: The synthesized AgNPs were crystalline with sizes of 70.70 ± 22-192.02 ± 53 nm as revealed using XRD and SEM. The sizes of AgNPs can be varied through alteration of times and temperatures used in their synthesis. These AgNPs were investigated for potential use as an antibacterial agent to inhibit pathogenic bacteria. Their antibacterial activity was tested on S. epidermidis and P. aeruginosa. The results showed that AgNPs had a high antibacterial which depended on their synthesis conditions, particularly when processed at 100 oC for 6 h and 200 oC for 12 h. The cytotoxicity of AgNPs was determined using human PBMCs revealing no obvious cytotoxicity. These results indicated that AgNPs@AV can be effectively utilized in pharmaceutical, biotechnological and biomedical applications. Discussion: Aloe vera extract was processed using a green and facile method. This was a hydrothermal method to reduce silver nitrate to AgNPs@AV. Varying the hydrothermal temperature provided the fine spherical shaped nanoparticles. The size of the nanomaterial was affected by its thermal preparation. The particle size of AgNPs could be tuned by varying both time and temperature. A process using a pure AG phase could go to completion in 6h at 200 oC, whereas reactions at lower temperatures required longer times. Moreover, the antibacterial effect of this hybrid nanomaterial was sufficient that it could be used to inhibit pathogenic bacteria since silver release was dependent upon its particle size. The high activity of the largest AgNPs might have resulted from a high concentration of aloe vera compounds incorporated into the AgNPs during hydrothermal synthesis.


Author(s):  
Subbiah Murugesan ◽  
Sundaresan Bhuvaneswari ◽  
Vajiravelu Sivamurugan

Objective: In the present system, the green synthesis of silver nanoparticles using marine the red alga Spyridia fusiformis and antibacterial activity was carried out.Methods: The seaweed extract was used for the synthesis of AgNPs at room temperature. The silver nanoparticles were characterized by using UV–Visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscope and X-ray diffraction (XRD) techniques. The antibacterial activity of biosynthesized silver nanoparticles was carried out by disc diffusion method against pathogenic bacteria.Results: The UV-visible spectroscopy revealed surface plasmon resonance at 450 nm. The FT-IR measurements showed the possible functional groups responsible for the formation of nanoparticles. The X-ray diffraction analysis showed that the particles were crystalline in nature. TEM micrograph has shown the formation of silver nanoparticles with the size in the range of 5–50 nm. The silver nanoparticles synthesized from the S. fusiformis showed higher activity and proved their efficacy in controlling the pathogenic bacterial strains. The nanoparticles showed highest inhibition activity on K. pneumaniae and S. aureus up to 26 and 24±0.01 mm at 100 μg/ml of nanoparticles.Conclusion: The synthesised AgNPs have shown the best antibacterial activity against human pathogens E. coli, K. pneumoniae, S. aureus and P. aeruginosa. The above eco-friendly AgNPs synthesis procedure could be a viable solution for industrial applications in the future and therapeutic needs.


Author(s):  
Patcharaporn Tippayawat ◽  
Nutthakritta Phromviyo ◽  
Parichart Boueroy ◽  
Apiwat Chompoosor

Background: There is worldwide interest in silver nanoparticles (AgNPs) synthesized by various chemical reactions for use in applications exploiting their antibacterial activity, even though these processes exhibit a broad range of toxicity in vertebrates and invertebrates alike. To avoid the chemical toxicity, biosynthesis (green synthesis) of metal nanoparticles is proposed as a cost-effective and environmental friendly alternative. Aloe vera leaf extract is a medicinal agent with multiple properties including an antibacterial effect. Moreover the constituents of aloe vera leaves include lignin, hemicellulose, and pectins which can be used in the reduction of silver ions to produce as AgNPs@aloe vera (AgNPs@AV) with antibacterial activity. Methods: AgNPs were prepared by an eco-friendly hydrothermal method using an aloe vera plant extract solution as both a reducing and stabilizing agent. AgNPs@AV were characterized using XRD and SEM. Additionally, an agar well diffusion method was used to screen for antimicrobial activity. MIC and MBC were used to correlate the concentration of AgNPs@AV its bactericidal effect. SEM was used to investigate bacterial inactivation. Then the toxicity with human cells was investigated using an MTT assay. Results: The synthesized AgNPs were crystalline with sizes of 70.70 ± 22-192.02 ± 53 nm as revealed using XRD and SEM. The sizes of AgNPs can be varied through alteration of times and temperatures used in their synthesis. These AgNPs were investigated for potential use as an antibacterial agent to inhibit pathogenic bacteria. Their antibacterial activity was tested on S. epidermidis and P. aeruginosa. The results showed that AgNPs had a high antibacterial which depended on their synthesis conditions, particularly when processed at 100 oC for 6 h and 200 oC for 12 h. The cytotoxicity of AgNPs was determined using human PBMCs revealing no obvious cytotoxicity. These results indicated that AgNPs@AV can be effectively utilized in pharmaceutical, biotechnological and biomedical applications. Discussion: Aloe vera extract was processed using a green and facile method. This was a hydrothermal method to reduce silver nitrate to AgNPs@AV. Varying the hydrothermal temperature provided the fine spherical shaped nanoparticles. The size of the nanomaterial was affected by its thermal preparation. The particle size of AgNPs could be tuned by varying both time and temperature. A process using a pure AG phase could go to completion in 6h at 200 oC, whereas reactions at lower temperatures required longer times. Moreover, the antibacterial effect of this hybrid nanomaterial was sufficient that it could be used to inhibit pathogenic bacteria since silver release was dependent upon its particle size. The high activity of the largest AgNPs might have resulted from a high concentration of aloe vera compounds incorporated into the AgNPs during hydrothermal synthesis.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2589 ◽  
Author(s):  
Patcharaporn Tippayawat ◽  
Nutthakritta Phromviyo ◽  
Parichart Boueroy ◽  
Apiwat Chompoosor

BackgroundThere is worldwide interest in silver nanoparticles (AgNPs) synthesized by various chemical reactions for use in applications exploiting their antibacterial activity, even though these processes exhibit a broad range of toxicity in vertebrates and invertebrates alike. To avoid the chemical toxicity, biosynthesis (green synthesis) of metal nanoparticles is proposed as a cost-effective and environmental friendly alternative. Aloe vera leaf extract is a medicinal agent with multiple properties including an antibacterial effect. Moreover the constituents of aloe vera leaves include lignin, hemicellulose, and pectins which can be used in the reduction of silver ions to produce as AgNPs@aloe vera (AgNPs@AV) with antibacterial activity.MethodsAgNPs were prepared by an eco-friendly hydrothermal method using an aloe vera plant extract solution as both a reducing and stabilizing agent. AgNPs@AV were characterized using XRD and SEM. Additionally, an agar well diffusion method was used to screen for antimicrobial activity. MIC and MBC were used to correlate the concentration of AgNPs@AV its bactericidal effect. SEM was used to investigate bacterial inactivation. Then the toxicity with human cells was investigated using an MTT assay.ResultsThe synthesized AgNPs were crystalline with sizes of 70.70 ± 22-192.02 ± 53 nm as revealed using XRD and SEM. The sizes of AgNPs can be varied through alteration of times and temperatures used in their synthesis. These AgNPs were investigated for potential use as an antibacterial agent to inhibit pathogenic bacteria. Their antibacterial activity was tested onS. epidermidisandP. aeruginosa. The results showed that AgNPs had a high antibacterial which depended on their synthesis conditions, particularly when processed at 100oC for 6 h and 200oC for 12 h. The cytotoxicity of AgNPs was determined using human PBMCs revealing no obvious cytotoxicity. These results indicated that AgNPs@AV can be effectively utilized in pharmaceutical, biotechnological and biomedical applications.DiscussionAloe vera extract was processed using a green and facile method. This was a hydrothermal method to reduce silver nitrate to AgNPs@AV. Varying the hydrothermal temperature provided the fine spherical shaped nanoparticles. The size of the nanomaterial was affected by its thermal preparation. The particle size of AgNPs could be tuned by varying both time and temperature. A process using a pure AG phase could go to completion in 6 h at 200oC, whereas reactions at lower temperatures required longer times. Moreover, the antibacterial effect of this hybrid nanomaterial was sufficient that it could be used to inhibit pathogenic bacteria since silver release was dependent upon its particle size. The high activity of the largest AgNPs might have resulted from a high concentration of aloe vera compounds incorporated into the AgNPs during hydrothermal synthesis.


Author(s):  
Gowri Shankar Krishnan ◽  
Namrata Pradhan ◽  
Masilamani K ◽  
Albin T Fleming

ABSTRACTObjective: In this study, silver nanoparticles (SNPs) were synthesized using an aqueous extract of Trainthema portulacastrum and silver ions (Ag+)which have been proven against certain pathogenic bacterial strains and hepatocellular carcinoma (HepG2) cell line.Methods: The bio fabricated nanoparticles were confirmed by surface plasmon resonance which were characterized by biophysical measuresutilizing the ultraviolet-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray, and transmission electron microscope(TEM), Fourier transform infrared spectroscopy, particle size analyzer, and X-ray diffraction. Antibacterial efficacy against Enterobacter aerogens,Proteus mirabilis, Escherichia coli, Staphylococcus epidermis, and Bacillus subtilis. The effect of SNPs tested against HepG2 and NIH/3T3 cell lineexhibits a dose-dependent toxicity.Results and Conclusion: The SEM and TEM images confirmed the presence of spherical and hexagonal shape (0.3-4 μm) of nanocrystalline particleswith the size range of 11.5-29.2 nm. The average particles size of SNPs is 190.3±17.0 nm. Antibacterial activity was carried out by agar well diffusionmethod against different pathogenic bacteria of which B. subtilis showed a significant zone of inhibition 8.66 mm and 12.0 mm for aqueous plantextract and synthesized SNPs. The effect of SNPs tested against HepG2 and NIH/3T3 cell line exhibits a dose-dependent toxicity. In case of HepG2, thecell viability was decreased to 50% (IC50) at the concentration of 173.8±0.84 μg/mL. From the results, it can be concluded that the SNPs fabricatedusing green synthesis method will be a promising candidate in the biomedical field, due to its high bioactive properties.Keywords: Silver nanoparticles, Trainthema portulacastrum, Antibacterial activity, Cytotoxic activity.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Kanniah Paulkumar ◽  
Gnanadhas Gnanajobitha ◽  
Mahendran Vanaja ◽  
Shanmugam Rajeshkumar ◽  
Chelladurai Malarkodi ◽  
...  

Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract ofPiper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray analysis (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7–50 nm and 9–30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Susanna Gevorgyan ◽  
Robin Schubert ◽  
Mkrtich Yeranosyan ◽  
Lilit Gabrielyan ◽  
Armen Trchounian ◽  
...  

AbstractThe application of green synthesis in nanotechnology is growing day by day. It’s a safe and eco-friendly alternative to conventional methods. The current research aimed to study raw royal jelly’s potential in the green synthesis of silver nanoparticles and their antibacterial activity. Royal jelly served as a reducing and oxidizing agent in the green synthesis technology of colloidal silver nanoparticles. The UV–Vis maximum absorption at ~ 430 nm and fluorescence emission peaks at ~ 487 nm confirmed the presence of Ag NPs. Morphology and structural properties of Ag NPs and the effect of ultrasound studies revealed: (i) the formation of polydispersed and spherical particles with different sizes; (ii) size reduction and homogeneity increase by ultrasound treatment. Antibacterial activity of different concentrations of green synthesized Ag NPs has been assessed on Gram-negative S. typhimurium and Gram-positive S. aureus, revealing higher sensitivity on Gram-negative bacteria.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1777 ◽  
Author(s):  
Md. Mahiuddin ◽  
Prianka Saha ◽  
Bungo Ochiai

A green synthesis of silver nanoparticles (AgNPs) was conducted using the stem extract of Piper chaba, which is a plant abundantly growing in South and Southeast Asia. The synthesis was carried out at different reaction conditions, i.e., reaction temperature, concentrations of the extract and silver nitrate, reaction time, and pH. The synthesized AgNPs were characterized by visual observation, ultraviolet–visible (UV-vis) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), energy dispersive x-ray (EDX), and Fourier transform infrared (FTIR) spectroscopy. The characterization results revealed that AgNPs were uniformly dispersed and exhibited a moderate size distribution. They were mostly spherical crystals with face-centered cubic structures and an average size of 19 nm. The FTIR spectroscopy and DLS analysis indicated that the phytochemicals capping the surface of AgNPs stabilize the dispersion through anionic repulsion. The synthesized AgNPs effectively catalyzed the reduction of 4-nitrophenol (4-NP) and degradation of methylene blue (MB) in the presence of sodium borohydride.


2020 ◽  
Vol 11 (4) ◽  
pp. 5382-5387
Author(s):  
Irshad Ul Haq Bhat ◽  
Maisarah Binti Alias

The approach towards green synthetic methods has been enormously encouraged to synthesise nanoparticles for various uses. In this study, the one-pot synthetic method was adapted to synthesise silver nanoparticles (AgNPs) using Melastoma malabathricum (M. malabathricum) aqueous extract. The formation of AgNPs was confirmed by observing the results obtained by optical characterisation methods. The plasma resonance band along with shoulder at 375 nm and 595 nm, respectively, in Uv-Visible spectra supported the conversion of silver (Ag) to AgNPs reduced by functional groups present in the plant extract. The size of AgNPs was 31 nm and cubic in shape as confirmed by X-ray diffractometry (XRD) using Scherer equation. X-Ray Fluorescence (XRF) results also confirmed the presence of silver. The FTIR characterisation confirmed the presence of reducing functional groups. The antibacterial activity of AgNPs against Staphylococcus aureus (S. aureus) was carried out by disc diffusion method with increasing concentration of AgNPs, and enhanced inhibition zone was observed. The AgNPs obtained can be further explored against different bacterial strains and can a potential candidate as an antibacterial agent using the green synthetic approach.


Sign in / Sign up

Export Citation Format

Share Document