scholarly journals High Temperature Corrosion of Inconel 600 in NaCl-KCl Molten Salts

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
G. Salinas-Solano ◽  
J. Porcayo-Calderon ◽  
J. G. Gonzalez-Rodriguez ◽  
V. M. Salinas-Bravo ◽  
J. A. Ascencio-Gutierrez ◽  
...  

In this work the corrosion resistance of a high content nickel alloy, Inconel 600, was investigated in mixed NaCl-KCl salts at 700, 800, and 900°C for 100 hours in static air. Investigation was carried out using electrochemical techniques such as polarization curves, rest potential measurements, linear polarization resistance, and electrochemical impedance spectroscopy. Corroded specimens were analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Electrochemical measurements showed an increased degradation rate of Inconel 600 with increasing test temperature. SEM and EDS analysis show that the damage experienced by Inconel 600 is greater than that determined by electrochemical measurements. This damage was identified as internal corrosion due to the reaction of Cl2with the alloying elements (Cr and Fe); however, at 900°C the internal damage was minor and it was associated with the nickel content in the alloy.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
E. F. Diaz ◽  
C. Cuevas-Arteaga ◽  
N. Flores-García ◽  
S. Mejía Sintillo ◽  
O. Sotelo-Mazón

The corrosion performance of AISI-309 exposed 5 days to molten salts 50 mol% V2O5-50 mol% Na2SO4at 700°C is reported in this paper. Such evaluation was made using three electrochemical techniques: potentiodynamic polarization curve (PC), electrochemical impedance spectroscopy (EIS), and linear polarization resistance (Rp). FromPC, the Tafel slopes,Icorr, andEcorrwere obtained. From Nyquist and Bode plots, it was possible to determine two different stages; the first one showed just one loop, which indicated the initial formation of Cr2O3layer over the metallic surface; after that, the dissolution of Cr2O3formed a porous layer, which became part of the corrosion products; at the same time a NiO layer combined with sulfur was forming, which was suggested as the second stage, represented by two capacitive loops. EIS plots were in agreement with the physical characterization made from SEM and EDS analyses. Fitting of EIS experimental data allowed us to propose two electrical circuits, being in concordance with the corrosion stages. Parameters obtained from the simulation of EIS data are also reported. From the results, it was stated that AISI-309 suffered intergranular corrosion due to the presence of sulfur, which diffused to the metallic surface through a porous Cr2O3layer.


2019 ◽  
Vol 965 ◽  
pp. 133-141
Author(s):  
Rayane Z.C. Demoner ◽  
Alexandre R.P. Castro ◽  
Adriana L. Barros ◽  
J.P. Quintela ◽  
Jefferson R. de Oliveira ◽  
...  

Two types of polymeric coating were applied on an AISI 1020 steel, where one of them was reinforced by carbon nanotubes, with the objective of protection against corrosion in a medium containing saline solution, NaCl 3% wt satured with CO2, at 75 bar and tested at 50oC and 75oC for 360 hours. Electrochemical techniques, such as Linear Polarization Resistance, (LPR), Electrochemical Impedance Spectroscopy (EIS), Tafel curves and weight loss method, were used for coating evaluation performance. Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) were used to determine both the morphology and chemical composition of the layer formed on the analyzed surfaces. The coating adhesion to metallic surface was evaluated using pull-off test according to ASTM D4541-09. For the studied conditions, the results obtained showed that there was no adequate coating protection, occurring failures and indicating that both coatings may not be used in the tested conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
D. M. Martinez de la Escalera ◽  
J. J. Ramos-Hernandez ◽  
E. Porcayo-Palafox ◽  
J. Porcayo-Calderon ◽  
J. G. Gonzalez-Rodriguez ◽  
...  

In this study, the effect of the addition of Nd3+ ions as a corrosion inhibitor of the API X70 steel in a medium rich in chlorides was evaluated. The performance of the Nd3+ ions was evaluated by means of electrochemical techniques such as potentiodynamic polarization curves, open circuit potential measurements, linear polarization resistance, and electrochemical impedance spectroscopy, as well as by means of scanning electron microscopy and EDS measurements. The results showed that Nd3+ ions reduce the corrosion rate of steel at concentrations as low as 0.001 M Nd3+. At higher concentrations, the inhibition efficiency was only slightly affected although the concentration of chloride ions was increased by the addition of the inhibitor. The adsorption of the Nd3+ ions promotes the formation of a protective layer of oxides/hydroxides on the metal surface, thereby reducing the exchange rate of electrons. Nd3+ ions act as a mixed inhibitor with a strong predominant cathodic effect.


2018 ◽  
Vol 90 (3) ◽  
pp. 447-461 ◽  
Author(s):  
Antonio Doménech-Carbó ◽  
María Teresa Doménech-Carbó

AbstractThe application of electrochemical techniques for obtaining analytical information of interest in the fields of archaeometry, conservation and restoration of cultural heritage goods is reviewed. Focused on voltammetry of immobilised particles and electrochemical impedance spectroscopy techniques, electrochemical measurements offer valuable information for identifying and quantifying components, tracing provenances and manufacturing techniques and provide new tools for authentication and dating.


CORROSION ◽  
1991 ◽  
Vol 47 (4) ◽  
pp. 308-318 ◽  
Author(s):  
S. C. Dexter ◽  
D. J. Duquette ◽  
O. W. Siebert ◽  
H. A. Videla

Abstract Electrochemical techniques such as: corrosion and critical pitting potential measurements, direct current potentiostatic and potentiodynamic polarization, linear polarization resistance, split-cell current measurements, electrochemical impedance, electrochemical noise, and electrical resistance probes are evaluated for use in investigating microbiologically influenced corrosion. Examples are given to illustrate the capabilities and limitations of each technique.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
R. Ademar ◽  
J. G. Gonzalez-Rodriguez ◽  
J. Uruchurtu ◽  
J. Porcayo-Calderon ◽  
V. M. Salinas-Bravo ◽  
...  

The effect of 2.5 at.% Cr, Ti, and Ag on the corrosion behavior of Fe40Al intermetallic alloy in KCl-ZnCl2(1 : 1 M) at 670°C has been evaluated by using electrochemical techniques. Techniques included potentiodynamic polarization curves, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS) measurements. Results have shown that additions of both Cr and Ti were beneficial to the alloy, since they decreased its corrosion rate, whereas additions of Ag was detrimental, since its additions increased the corrosion rate, although the alloy was passivated by adding Ag or Cr. The best corrosion performance was obtained with the addition of Cr, whereas the highest corrosion rate was obtained by adding Ag. This is explained in terms of the stability of the corrosion products formed film.


2015 ◽  
Vol 227 ◽  
pp. 83-86
Author(s):  
Ohad Gaon ◽  
Barbara Kazanski ◽  
Alex Lugovskoy

Corrosion behavior of high-pressure die cast creep resistant magnesium alloy MRI 153M in 3% NaCl aqueous solution was studied by several electrochemical and non-electrochemical techniques. The electrochemical techniques were Electrochemical Impedance Spectroscopy (EIS), Linear Polarization Resistance (LPR) and Tafel-slope Polarization. The non-electrochemical techniques were mass-loss and gas evolution measurements. Values of corrosion rates were calculated and the morphology of corroded surface studied. While corrosion rates calculated by both non-electrochemical methods are not consistent, those gained by the three electrochemical methods demonstrate consistency. In general, the rate of corrosion calculated by the gas evolution method is in a good agreement with the corrosion rate calculated from the electrochemical methods, which should be an indication of mixed chemical-electrochemical character of the process. SEM and light microscope observation of corroded specimens demonstrated the localized character of corrosion, at least at the initial stages.


2018 ◽  
Vol 47 (4) ◽  
pp. 350-359 ◽  
Author(s):  
Nivin M. Ahmed ◽  
Mostafa G. Mohamed ◽  
Reham H. Tammam ◽  
Mohamed R. Mabrouk

Purpose This study aims to apply novel anticorrosive pigments containing silica fume-phosphates (Si-Ph), which were prepared using core-shell technique by covering 80-90 per cent silica fume (core) with 10-20 per cent phosphates (shell) previously, to play dual functions simultaneously as anticorrosive pigments in coating formulations and as an anticorrosive admixture in concrete even if it is not present in the concrete itself. Two comparisons were held out to show the results of coatings on rebars containing core-shell pigments in concrete, and concrete admixtured with silica fume can perform a dual function as anticorrosive pigment and concrete admixture. The evaluation of corrosion protection efficiency of coatings containing core-shell pigments and those containing phosphates was performed. Design/methodology/approach Simple chemical techniques were used to prepare core-shell pigments, and their characterization was carried out in a previous work. These pigments were incorporated in solvent-based paint formulations based on epoxy resin. Different electrochemical techniques such as open-circuit potential and electrochemical impedance spectroscopy were used to evaluate the anticorrosive efficiency of the new pigments. Findings The electrochemical measurements showed that concrete containing coated rebars with core-shell pigments exhibited almost similar results to that of concrete admixtured with silica fume. Also, the anticorrosive performance of coatings containing Si-Ph pigments offered protection efficiency almost similar to that of phosphates, proving that these new pigments can perform both roles as anticorrosive pigment and concrete admixture. Originality/value Although the new Si-Ph pigments contain more than 80 per cent waste material, its performance can be compared to original phosphate pigments in the reinforced concrete.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2491
Author(s):  
Elena Garcia ◽  
Julio Torres ◽  
Nuria Rebolledo ◽  
Raul Arrabal ◽  
Javier Sanchez

The number of reinforced concrete structures subject to anoxic conditions such as offshore platforms and geological storage facilities is growing steadily. This study explored the behaviour of embedded steel reinforcement corrosion under anoxic conditions in the presence of different chloride concentrations. Corrosion rate values were obtained by three electrochemical techniques: Linear polarization resistance, electrochemical impedance spectroscopy, and chronopotenciometry. The corrosion rate ceiling observed was 0.98 µA/cm2, irrespective of the chloride content in the concrete. By means of an Evans diagram, it was possible to estimate the value of the cathodic Tafel constant (bc) to be 180 mV dec−1, and the current limit yielded an ilim value of 0.98 µA/cm2. On the other hand, the corrosion potential would lie most likely in the −900 mVAg/AgCl to −1000 mVAg/AgCl range, whilst the bounds for the most probable corrosion rate were 0.61 µA/cm2 to 0.22 µA/cm2. The experiments conducted revealed clear evidence of corrosion-induced pitting that will be assessed in subsequent research.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 852
Author(s):  
Asiful H. Seikh ◽  
Hossam Halfa ◽  
Mahmoud S. Soliman

Molybdenum (Mo) is an important alloying element in maraging steels. In this study, we altered the Mo concentration during the production of four cobalt-free maraging steels using an electroslag refining process. The microstructure of the four forged maraging steels was evaluated to examine phase contents by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. Additionally, we assessed the corrosion resistance of the newly developed alloys in 3.5% NaCl solution and 1 M H2SO4 solution through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Furthermore, we performed SEM and energy-dispersive spectroscopy (EDS) analysis after corrosion to assess changes in microstructure and Raman spectroscopy to identify the presence of phases on the electrode surface. The microstructural analysis shows that the formation of retained austenite increases with increasing Mo concentrations. It is found from corrosion study that increasing Mo concentration up to 4.6% increased the corrosion resistance of the steel. However, further increase in Mo concentration reduces the corrosion resistance.


Sign in / Sign up

Export Citation Format

Share Document