scholarly journals Isolation, Characterization, and Application of Nanocellulose from Oil Palm Empty Fruit Bunch Fiber as Nanocomposites

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
N. S. Lani ◽  
N. Ngadi ◽  
A. Johari ◽  
M. Jusoh

Nanocomposites, consisting of a polymeric matrix and nanosized elements as reinforcement, have attracted significant scientific attention because of their high mechanical performance. A large variety of nanocomposites have been prepared using bio-based materials as a matrix and nanoreinforcement, so that it can reduce the dependence on nondegradable products and move to a sustainable materials basis. The objective of this study was to isolate nanocellulose from empty fruit bunch (EFB) fiber and their reinforcing effect on polyvinyl alcohol (PVA)/starch blend films. A series of PVA/starch films with different content of nanocellulose were prepared by solution casting method. Nanocellulose fiber with diameters ranging from 4 to 15 nm has been successfully prepared. On the other hand, PVA/starch films reinforced with nanocellulose fiber possess significantly improved properties compared to unreinforced film. From the results, PVA/starch films with the addition of 5% (v/v) of nanocellulose exhibited best combination of properties. This nanocomposite was found to have tensile strength at about 5.694 MPa and elongation at break was 481.85%. In addition to good mechanical properties, this nanocomposite has good water resistance and biodegradability.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
H. Somashekarappa ◽  
Y. Prakash ◽  
K. Hemalatha ◽  
T. Demappa ◽  
R. Somashekar

The aim of this present work is to investigate the effect of plasticizers like Sorbitol on microstructural and mechanical properties of hydroxypropyl methylcellulose (HPMC) and Polyvinylpyrrolidone (PVP) blend films. The pure blend and plasticized blend films were prepared by solution casting method and investigated using wide angle X-ray scattering (WAXS) method. WAXS analysis confirms that the plasticizers can enter into macromolecular blend structure and destroy the crystallinity of the films. FTIR spectra show that there are a shift and decrease in the intensity of the peaks confirming the interaction of plasticizer with the blend. Mechanical properties like tensile strength and Young’s Modulus decrease up to 0.6% of Sorbitol content in the films. Percentage of elongation at break increases suggesting that the plasticized films are more flexible than pure blend films. These films are suitable to be used as environmental friendly and biodegradable packaging films.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yen Leng Pak ◽  
Mansor Bin Ahmad ◽  
Kamyar Shameli ◽  
Wan Md Zin Wan Yunus ◽  
Nor Azowa Ibrahim ◽  
...  

Nanocomposites of poly-3-hydroxybutyrate/poly(butyleneadipate-co-terephthalate)/layered double hydroxide (PHB/PBAT/LDH) were prepared from a binary blend of PHB/PBAT and stearate-Zn3Al LDH via a solution casting method using chloroform as solvent in this study. The pristine Zn3Al LDH was synthesized from nitrate salts solution at pH 7 by using coprecipitation technique and then was modified by stearate anions surfactant via ion exchange reaction. As a result, the basal spacing of the LDH was increased from 8.77 to 24.94 Å after the modification. Intercalated nanocomposites were formed due to the presence of diffraction peak in XRD diffractograms. The infrared spectrum of stearate-Zn3Al LDH exhibited the existence of stearate anions in the synthesized Zn3Al LDH. Mechanical properties with 2 wt% stearate-Zn3Al LDH loading nanocomposites showed 56 wt% improvements in elongation at break compared to those of the blend.


2015 ◽  
Vol 731 ◽  
pp. 565-568
Author(s):  
Pei Wang ◽  
Zhen Huang ◽  
Wei Zheng ◽  
Ma Dong Si

With soy protein isolate (SPI) as the main raw material, and ethylene glycol (EG) and polyethylene glycol (PEG) as two additives, a number of SPI-based films were prepared through the solution casting method. Results show that the film flexibility is obviously improved after adding EG and the film tensile strength and elongation at break could reach more than 10.5 MPa and 140%, respectively. The antimicrobial results exhibit EG has higher antibacterial effect against both bacteria ofE. coliandS. aureusthan PEG-400.


2012 ◽  
Vol 724 ◽  
pp. 89-92
Author(s):  
Ji Wei Li ◽  
Xue Gang Luo ◽  
Xiao Yan Lin ◽  
Xian Hong Li

The blend films of ungelatinized and gelatinized starch/polyvinyl alcohol (PVA) were prepared by solution casting method. Their morphologies and thermal properties were analyzed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). A droplet phase was observed in the blends containing ungelatinized starch and a laminated phase was observed in the blends containing gelatinized starch. For both ungelatinized and gelatinized starch/PVA blends the melting temperature (Tm) (210230) of PVA was detected, and the Tm of gelatinized starch/PVA blends was higher than that of the ungelatinized starch/PVA blends. TGA results showed that over the rst 300 the weight loss for ungelatinized starch/PVA blends was higher than that for gelatinized starch/PVA blends, however the gelatinized starch/PVA blends showed the greater weight loss after scanning up to 400. Different morphologies and thermal properties of two types of blends were attributed to the different hydrogen bonding interactions between starch and polyvinyl alcohol.


2021 ◽  
Vol 2120 (1) ◽  
pp. 012004
Author(s):  
May Teng Hooi ◽  
Siew Wei Phang ◽  
Hui Ying Yow ◽  
Edmund David ◽  
Ning Xin Kim ◽  
...  

Abstract This paper presents the interaction comparison of poly(vinyl) alcohol (PVA) with hydroxyapatite derived from Spanish Mackerel (SM) and Whitefin Wolf Herring (WWH) bones, in different processing method. PVA filament and solution casting method illustrated higher crystallinity in the FTIR graph as compared to the PVA pellet and filament extrusion method. Besides, minimal interactions between PVA with glycerol and HAp was observed as well. PVA pellet and solution casting method portrait higher interaction as compared to the PVA filament and extrusion method. As for the HAp of SM and WWH, WWH had higher crystallinity and better cell adhesion with a higher Ca/P ratio while SM had relatively better mechanical strength with Ca/P ratio near to stoichiometric value. The loading of HAp (0, 2.5, 5, 10, 20, 30%) does not affect interactions of PVA/HAp composite in FTIR, and thermal properties in TGA. However, it caused an increase in crystallinity at low HAp loading and decreased at higher loading of HAp above 10%. Upon addition of HAp, tensile strength increased and elongation at break decreased. As the loading of HAp increased, both mechanical properties decreased. Scaffold with WWH composite possessed lower tensile strength and higher elongation at break than SM composite. The result of mechanical properties corresponded to the SEM result. ANOVA analysis justified the effect of HAp variations and loading on the mechanical properties of the composite was prominent.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5233
Author(s):  
Katarzyna Lewandowska ◽  
Marta Szulc

The viscosity behaviour and physical properties of blends containing hyaluronic acid (HA) and poly(N-vinylpyrrolidone) (PVP) were studied by the viscometric technique, steady shear tests, tensile tests and infrared spectroscopy. Viscometric and rheological measurements were carried out using blends of HA/PVP with different HA weight fractions (0, 0.2, 0.5, 0.8 and 1). The polymer films and HA/PVP blend films were prepared using the solution casting method. The study of HA blends by viscometry showed that HA/PVP was miscible with the exception of the blend with high HA content. HA and its blends showed a shear-thinning flow behaviour. The non-Newtonian indices (n) of HA/PVP blends were calculated by the Ostwald–de Waele equation, indicating a shear-thinning effect in which pseudoplasticity increased with increasing HA contents. Mechanical properties, such as tensile strength and elongation at the break, were higher for HA/PVP films with wHA = 0.5 compared to those with higher HA contents. The elongation at the break of HA/PVP blend films displayed a pronounced increase compared to HA films. Moreover, infrared analysis confirmed the existence of interactions between HA and PVP. The blending of HA with PVP generated films with elasticity and better properties than homopolymer films.


2020 ◽  
Vol 12 ◽  
pp. 120006
Author(s):  
Rana S. Mahmood ◽  
Sabah A. Salman ◽  
Nabeel Ali Bakr

In this study, pure polymer blend (PVA:PVP) film and salt (CdCl2·H2O) reinforced polymer blend films were prepared at different weight ratios (10 wt%, 20 wt%, 40 wt%) using the casting method. The effect of the salt weight ratio on the dielectric properties of the polymer blend films reinforced by CdCl2·H2O salt were investigated, and the experimental results showed that the dielectric constant and the dielectric loss factor decreased as the frequency increased for all polymer blend films. Moreover, the above-mentioned properties increased with increasing salt weight ratios at the same frequency. The experimental results also showed an increase in AC electrical conductivity with increasing frequency, for all polymer blend films, and the AC electrical conductivity also increased with an increase in the weight ratio of the salt at the same frequency. The effect of the salt weight ratio on the mechanical properties of the salt-reinforced PVA:PVP polymer blend films was also studied. The experimental results obtained from the tensile test of the salt-reinforced polymer blend films show significant change in the values of tensile strength, elongation at break, and Young’s modulus with increasing salt weight ratios; the hardness value first increases then decreases with increasing salt weight ratios, and the fracture energy value increases with increasing salt weight ratios, thus they could be good candidates for hard adhesives with low flexibility.


2020 ◽  
Vol 999 ◽  
pp. 145-154
Author(s):  
Gui Juan Li ◽  
Hai Xi Luo ◽  
Wei Xia ◽  
Xue Feng Xu ◽  
Yu Zhang

Nano coir cellulose whiskersare materials abstracted from mesocarp of coconut shell which was modified by using KH570 as a coupling agent and modified nano coir cellulose whiskers need to be dispersed in chitosan/polyvinyl alcohol (CS/PVA) mixture solution. Because of regular structure and high crystallinity, nano coir cellulose whiskers could be applied in medical materials.In this paper, the results obtained with solution casting method by characterizing and analyzing structure, thermal properties, crystallization behavior and morphology of nano coir cellulose whiskers enhanced CS/PVA composite filmby FTIR, DSC, TG, XRD and SEM test. Different content of modified nano coir whiskers and CS/PVA composite film were preparedand themechanical properties of the composite film were also conducted. The results show that the tensile strength and Young's modulus of the CS/PVA composite film with modified nano coir whiskers are significantly improved, and Elongation break increases at first and then decreases, which indicates nano coir cellulose whiskers are good materials for medical purpose.


2014 ◽  
Vol 554 ◽  
pp. 86-90 ◽  
Author(s):  
Nurul Saadiah Lani ◽  
Norzita Ngadi

Nowadays, the demands of plastics materials are increasing rapidly. Nevertheless, most of these products are non-environmentally friendly and non–biodegradable. Polyvinyl alcohol (PVA) is one of the polymers that have been investigated widely for the potential for use as biodegradable plastics. However, the applications of PVA materials are limited due to their high cost and slow degradation process especially under anaerobic condition. Therefore, this study was conducted to investigate the effect of varying the PVA and starch content on the composite properties. A series of blend films with different ratio of PVA and starch were prepared by solution casting method. The results of this study have revealed that the polyvinyl alcohol and starch at a weight ratio of 70:30 was selected as the best blending composition, whereby the 70:30 blend film have the best elongation at break at about 334.69%, with a tolerable tensile strength value and water absorption capacity of 3.830 MPa and 49.59%, respectively.


Sign in / Sign up

Export Citation Format

Share Document