scholarly journals Triangle and GA Methods for UAVs Jamming

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Yu Zhang ◽  
Lisheng Yang

We focus on how to jam UAVs network efficiently. The system model is described and the problem is formulated. Based on two properties and a theorem which helps to decide good location for a jammer, we present the Triangle method to find good locations for jammers. The Triangle method is easy to understand and has overall computational complexity ofON2. We also present a genetic algorithm- (GA-) based jamming method, which has computational complex ofOLMN2. New chromosome, mutation, and crossover operations are redefined for the GA method. The simulation shows that Triangle and GA methods perform better than Random method. If the ratio of jammers’ number to UAVs’ number is low (lower than 1/5 in this paper), GA method does better than Triangle method. Otherwise, Triangle method performs better.

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Jingtian Zhang ◽  
Fuxing Yang ◽  
Xun Weng

Robotic mobile fulfilment system (RMFS) is an efficient and flexible order picking system where robots ship the movable shelves with items to the picking stations. This innovative parts-to-picker system, known as Kiva system, is especially suited for e-commerce fulfilment centres and has been widely used in practice. However, there are lots of resource allocation problems in RMFS. The robots allocation problem of deciding which robot will be allocated to a delivery task has a significant impact on the productivity of the whole system. We model this problem as a resource-constrained project scheduling problem with transfer times (RCPSPTT) based on the accurate analysis of driving and delivering behaviour of robots. A dedicated serial schedule generation scheme and a genetic algorithm using building-blocks-based crossover (BBX) operator are proposed to solve this problem. The designed algorithm can be combined into a dynamic scheduling structure or used as the basis of calculation for other allocation problems. Experiment instances are generated based on the characteristics of RMFS, and the computation results show that the proposed algorithm outperforms the traditional rule-based scheduling method. The BBX operator is rapid and efficient which performs better than several classic and competitive crossover operators.


2015 ◽  
Vol 738-739 ◽  
pp. 598-601
Author(s):  
Han Yang Zhu ◽  
Xin Yu Jin ◽  
Jian Feng Shen

In telemedicine, medical images are always considered very important telemedicine diagnostic evidences. High transmission delay in a bandwidth limited network becomes an intractable problem because of its large size. It’s important to achieve a quality balance between Region of Interest (ROI) and Background Region (BR) when ROI-based image encoding is being used. In this paper, a research made on balancing method of LS-SVM based ROI/BR PSNR prediction model to optimize the ROI encoding shows it’s much better than conventional methods but with very high computational complexity. We propose a new method using extreme learning machine (ELM) with lower computational complexity to improve encoding efficiency compared to LS-SVM based model. Besides, it also achieves the same effect of balancing ROI and BR.


2018 ◽  
Vol 14 (09) ◽  
pp. 190 ◽  
Author(s):  
Shewangi Kochhar ◽  
Roopali Garg

<p>Cognitive Radio has been skillful technology to improve the spectrum sensing as it enables Cognitive Radio to find Primary User (PU) and let secondary User (SU) to utilize the spectrum holes. However detection of PU leads to longer sensing time and interference. Spectrum sensing is done in specific “time frame” and it is further divided into Sensing time and transmission time. Higher the sensing time better will be detection and lesser will be the probability of false alarm. So optimization technique is highly required to address the issue of trade-off between sensing time and throughput. This paper proposed an application of Genetic Algorithm technique for spectrum sensing in cognitive radio. Here results shows that ROC curve of GA is better than PSO in terms of normalized throughput and sensing time. The parameters that are evaluated are throughput, probability of false alarm, sensing time, cost and iteration.</p>


2012 ◽  
Vol 25 (3) ◽  
pp. 235-243 ◽  
Author(s):  
Rashmi Deka ◽  
Soma Chakraborty ◽  
Sekhar Roy

Spectrum availability is becoming scarce due to the rise of number of users and rapid development in wireless environment. Cognitive radio (CR) is an intelligent radio system which uses its in-built technology to use the vacant spectrum holes for the use of another service provider. In this paper, genetic algorithm (GA) is used for the best possible space allocation to cognitive radio in the spectrum available. For spectrum reuse, two criteria have to be fulfilled - 1) probability of detection has to be maximized, and 2) probability of false alarm should be minimized. It is found that with the help of genetic algorithm the optimized result is better than without using genetic algorithm. It is necessary that the secondary user should vacate the spectrum in use when licensed users are demanding and detecting the primary users accurately by the cognitive radio. Here, bit error rate (BER) is minimized for better spectrum sensing purpose using GA.


2017 ◽  
Vol 8 (4) ◽  
pp. 58-83 ◽  
Author(s):  
Abdul Kayom Md Khairuzzaman ◽  
Saurabh Chaudhury

Multilevel thresholding is a popular image segmentation technique. However, computational complexity of multilevel thresholding increases very rapidly with increasing number of thresholds. Metaheuristic algorithms are applied to reduce computational complexity of multilevel thresholding. A new method of multilevel thresholding based on Moth-Flame Optimization (MFO) algorithm is proposed in this paper. The goodness of the thresholds is evaluated using Kapur's entropy or Otsu's between class variance function. The proposed method is tested on a set of benchmark test images and the performance is compared with PSO (Particle Swarm Optimization) and BFO (Bacterial Foraging Optimization) based methods. The results are analyzed objectively using the fitness function and the Peak Signal to Noise Ratio (PSNR) values. It is found that MFO based multilevel thresholding method performs better than the PSO and BFO based methods.


2021 ◽  
Vol 2083 (3) ◽  
pp. 032010
Author(s):  
Rong Ma

Abstract The traditional BP neural network is difficult to achieve the target effect in the prediction of waterway cargo turnover. In order to improve the accuracy of waterway cargo turnover forecast, a waterway cargo turnover forecast model was created based on genetic algorithm to optimize neural network parameters. The genetic algorithm overcomes the trap that the general iterative method easily falls into, that is, the “endless loop” phenomenon that occurs when the local minimum is small, and the calculation time is small, and the robustness is high. Using genetic algorithm optimized BP neural network to predict waterway cargo turnover, and the empirical analysis of the waterway cargo turnover forecast is carried out. The results obtained show that the neural network waterway optimized by genetic algorithm has a higher accuracy than the traditional BP neural network for predicting waterway cargo turnover, and the optimization model can long-term analysis of the characteristics of waterway cargo turnover changes shows that the prediction effect is far better than traditional neural networks.


2021 ◽  
Vol 15 ◽  
Author(s):  
Shui-Hua Wang ◽  
Xianwei Jiang ◽  
Yu-Dong Zhang

Aim: Multiple sclerosis (MS) is a disease, which can affect the brain and/or spinal cord, leading to a wide range of potential symptoms. This method aims to propose a novel MS recognition method.Methods: First, the bior4.4 wavelet is used to extract multiscale coefficients. Second, three types of biorthogonal wavelet features are proposed and calculated. Third, fitness-scaled adaptive genetic algorithm (FAGA)—a combination of standard genetic algorithm, adaptive mechanism, and power-rank fitness scaling—is harnessed as the optimization algorithm. Fourth, multiple-way data augmentation is utilized on the training set under the setting of 10 runs of 10-fold cross-validation. Our method is abbreviated as BWF-FAGA.Results: Our method achieves a sensitivity of 98.00 ± 0.95%, a specificity of 97.78 ± 0.95%, and an accuracy of 97.89 ± 0.94%. The area under the curve of our method is 0.9876.Conclusion: The results show that the proposed BWF-FAGA method is better than 10 state-of-the-art MS recognition methods, including eight artificial intelligence-based methods, and two deep learning-based methods.


Author(s):  
D. D. Lucas ◽  
C. Yver Kwok ◽  
P. Cameron-Smith ◽  
H. Graven ◽  
D. Bergmann ◽  
...  

Abstract. Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototype network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.


2021 ◽  
Author(s):  
Xianwang Li ◽  
Zhongxiang Huang ◽  
Wenhui Ning

Abstract Machine learning is gradually developed and applied to more and more fields. Intelligent manufacturing system is also an important system model that many companies and enterprises are designing and implementing. The purpose of this study is to evaluate and analyze the model design of Intelligent Manufacturing System Based on machine learning algorithm. The method of this study is to first obtain all the relevant attributes of the intelligent manufacturing system model, and then use machine learning algorithm to delete irrelevant attributes to prevent redundancy and deviation of neural network fitting, make the original probability distribution as close as possible to the distribution when using the selected attributes, and use the ratio of industry average to quantitative expression for measurable and obvious data indicators. As a result, the average running time of the intelligent manufacturing system is 17.35 seconds, and the genetic algorithm occupies 15.63 seconds. The machine learning network takes up 1.72 seconds. Under the machine learning algorithm, the training speed is very high, obviously higher than that of the genetic algorithm, and the BP network is 2.1% higher than the Elman algorithm. The evaluation running speed of the system model design is fast and the accuracy is high. This study provides a certain value for the model design evaluation and algorithm of various systems in the intelligent era.


Author(s):  
Rathipriya R.

A novel biclustering approach is proposed in this paper, which can be used to cluster data (like web data, gene expression data) into local pattern using MapReduce framework. The proposed biclustering approach extracts the highly coherent bicluster using a correlation measure called Average Correlation Value measure. Furthermore, MapReduce based genetic algorithm is firstly used to the biclustering of web data. This method can avoid local convergence in the optimization algorithms mostly. The MSWeb dataset and MSNBC web usage data set are used to test the performance of new MapReduce based Evolutionary biclustering algorithm. The experimental study is carried out for comparison of proposed algorithm with traditional genetic algorithm in biclustering. The results reveal that novel proposed approach preforms better than existing evolutionary biclustering approach.


Sign in / Sign up

Export Citation Format

Share Document