scholarly journals Type I Interferons: Key Players in Normal Skin and Select Cutaneous Malignancies

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Aimen Ismail ◽  
Nabiha Yusuf

Interferons (IFNs) are a family of naturally existing glycoproteins known for their antiviral activity and their ability to influence the behavior of normal and transformed cell types. Type I Interferons include IFN-αand IFN-β. Currently, IFN-αhas numerous approved antitumor applications, including malignant melanoma, in which IFN-αhas been shown to increase relapse free survival. Moreover, IFN-αhas been successfully used in the intralesional treatment of cutaneous squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). In spite of these promising clinical results; however, there exists a paucity of knowledge on the precise anti-tumor action of IFN-α/βat the cellular and molecular levels in cutaneous malignancies such as SCC, BCC, and melanoma. This review summarizes current knowledge on the extent to which Type I IFN influences proliferation, apoptosis, angiogenesis, and immune function in normal skin, cutaneous SCC, BCC, and melanoma.

2017 ◽  
Vol 292 (18) ◽  
pp. 7285-7294 ◽  
Author(s):  
Gideon Schreiber

Type I interferons (IFN-1) are cytokines that affect the expression of thousands of genes, resulting in profound cellular changes. IFN-1 activates the cell by dimerizing its two-receptor chains, IFNAR1 and IFNAR2, which are expressed on all nucleated cells. Despite a similar mode of binding, the different IFN-1s activate a spectrum of activities. The causes for differential activation may stem from differences in IFN-1-binding affinity, duration of binding, number of surface receptors, induction of feedbacks, and cell type-specific variations. All together these will alter the signal that is transmitted from the extracellular domain inward. The intracellular domain binds, directly or indirectly, different effector proteins that transmit signals. The composition of effector molecules deviates between different cell types and tissues, inserting an additional level of complexity to the system. Moreover, IFN-1s do not act on their own, and clearly there is much cross-talk between the activated effector molecules by IFN-1 and other cytokines. The outcome generated by all of these factors (processing step) is an observed phenotype, which can be the transformation of the cell to an antiviral state, differentiation of the cell to a specific immune cell, senescence, apoptosis, and many more. IFN-1 activities can be divided into robust and tunable. Antiviral activity, which is stimulated by minute amounts of IFN-1 and is common to all cells, is termed robust. The other activities, which we term tunable, are cell type-specific and often require more stringent modes of activation. In this review, I summarize the current knowledge on the mode of activation and processing that is initiated by IFN-1, in perspective of the resulting phenotypes.


Author(s):  
Caroline Bussmann ◽  
Wen-Ming Peng ◽  
Thomas Bieber ◽  
Natalija Novak

A subgroup of patients with atopic dermatitis develops one or more episodes of a severe viral skin infection caused by herpes simplex virus superimposed on eczematous skin lesions. This condition is named atopic dermatitis complicated by eczema herpeticum. Characteristic features of patients developing eczema herpeticum include an early age of onset of atopic dermatitis with a persistent and severe course into adulthood, predilection for eczematous skin lesions in the head and neck area, elevated total serum IgE levels and increased allergen sensitisation. Deficiencies at the level of both the innate and the adaptive immune system, which have been identified in atopic dermatitis, are much more pronounced in this subgroup. Predisposing cellular factors include a reduced number of plasmacytoid dendritic cells in the epidermis and a modified capacity of these cells to produce type I interferons after allergen challenge. In addition, lower levels of antimicrobial peptides in the skin of atopic dermatitis patients, resulting in part from a Th2-prone micromilieu, contribute to the lack of an effective defence against viral attack. In this review, we summarise the current knowledge of the molecular pathogenesis of eczema herpeticum.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14098-e14098
Author(s):  
Theresa N Canavan ◽  
Nicole Adell Doudican ◽  
Mary Stevenson ◽  
Anna C. Pavlick ◽  
John Carucci

e14098 Background: Merkel cell carcinoma (MCC) is a rare and aggressive neuroendocrine carcinoma of the skin that is highly immunogenic. Checkpoint inhibitors (CPI) have recently revolutionized the treatment of advanced MCC. In this study we sought to better understand how CPI are used in an outpatient setting and to better define MCC outcomes associated with their use. Methods: We conducted a retrospective chart review of MCC patients seen in the New York University Hematology and Oncology Department from 2012-2018. Patient characteristics and treatment regimens were compared between those with and without disease progression at any point during follow-up. Results: Fifteen patients were identified, 46.7% of whom presented with nodal or distant disease (Table). Nine patients experienced relapse during follow-up. There were no MCC-specific deaths, and 92.3% of patients were without evidence of MCC at the end of follow-up. Ten patients were treated with one or more CPI (pembrolizumab, nivolumab, ipilimumab) either in the setting of first line systemic therapy (71.4%) or after experiencing disease progression (28.6%). There was a trend toward improved relapse free survival with CPI use (P = 0.054). Conclusions: Although recurrences were common, overall outcomes at the end of follow-up were very good. CPI were well tolerated and were associated with a trend toward improved relapse free survival. Patients with advanced stage MCC would benefit from consideration of CPI as part of their treatment options. [Table: see text]


2020 ◽  
Vol 2020 ◽  
pp. 1-27 ◽  
Author(s):  
Patricio L. Acosta ◽  
Alana B. Byrne ◽  
Diego R. Hijano ◽  
Laura B. Talarico

Type I interferons (IFN-I) are a group of related proteins that help regulate the activity of the immune system and play a key role in host defense against viral infections. Upon infection, the IFN-I are rapidly secreted and induce a wide range of effects that not only act upon innate immune cells but also modulate the adaptive immune system. While IFN-I and many IFN stimulated genes are well-known for their protective antiviral role, recent studies have associated them with potential pathogenic functions. In this review, we summarize the current knowledge regarding the complex effects of human IFN-I responses in respiratory as well as reemerging flavivirus infections of public health significance and the molecular mechanisms by which viral proteins antagonize the establishment of an antiviral host defense. Antiviral effects and immune modulation of IFN-stimulated genes is discussed in resisting and controlling pathogens. Understanding the mechanisms of these processes will be crucial in determining how viral replication can be effectively controlled and in developing safe and effective vaccines and novel therapeutic strategies.


2007 ◽  
Vol 81 (16) ◽  
pp. 8656-8665 ◽  
Author(s):  
Fulvia Terenzi ◽  
Christine White ◽  
Srabani Pal ◽  
Bryan R. G. Williams ◽  
Ganes C. Sen

ABSTRACT The interferon-stimulated genes (ISGs) ISG56 and ISG54 are strongly induced in cultured cells by type I interferons (IFNs), viruses, and double-stranded RNA (dsRNA), which activate their transcription by various signaling pathways. Here we studied the stimulus-dependent induction of both genes in vivo. dsRNA, which is generated during virus infection, induced the expression of both genes in all organs examined. Induction was not seen in STAT1-deficient mice, indicating that dsRNA-induced gene expression requires endogenous IFN. We further examined the regulation of these ISGs in several organs from mice injected with dsRNA or IFN-β. Both ISG56 and ISG54 were widely expressed and at comparable levels. However, in organs isolated from mice injected with IFN-α the expression of ISG54 was reduced and more restricted in distribution compared with the expression level and distribution of ISG56. When we began to study specific cell types, splenic B cells showed ISG54 but not ISG56 expression in response to all agonists. Finally, in livers isolated from mice infected with vesicular stomatitis virus, the expression of ISG56, but not ISG54, was induced; this difference was observed at both protein and mRNA levels. These studies have revealed unexpected complexity in IFN-stimulated gene induction in vivo. For the first time we showed that the two closely related genes are expressed in a tissue-specific and inducer-specific manner. Furthermore, our findings provide the first evidence of a differential pattern of expression of ISG54 and ISG56 genes by IFN-α and IFN-β.


2010 ◽  
Vol 84 (18) ◽  
pp. 9452-9462 ◽  
Author(s):  
Shenghua Zhou ◽  
Anna M. Cerny ◽  
An Zacharia ◽  
Katherine A. Fitzgerald ◽  
Evelyn A. Kurt-Jones ◽  
...  

ABSTRACT Type I interferons (IFNs) play a critical role in the host defense against viruses. Lymphocytic choriomeningitis virus (LCMV) infection induces robust type I IFN production in its natural host, the mouse. However, the mechanisms underlying the induction of type I IFNs in response to LCMV infection have not yet been clearly defined. In the present study, we demonstrate that IRF7 is required for both the early phase (day 1 postinfection) and the late phase (day 2 postinfection) of the type I IFN response to LCMV, and melanoma differentiation-associated gene 5 (MDA5)/mitochondrial antiviral signaling protein (MAVS) signaling is crucial for the late phase of the type I IFN response to LCMV. We further demonstrate that LCMV genomic RNA itself (without other LCMV components) is able to induce type I IFN responses in various cell types by activation of the RNA helicases retinoic acid-inducible gene I (RIG-I) and MDA5. We also show that expression of the LCMV nucleoprotein (NP) inhibits the type I IFN response induced by LCMV RNA and other RIG-I/MDA5 ligands. These virus-host interactions may play important roles in the pathogeneses of LCMV and other human arenavirus diseases.


Sign in / Sign up

Export Citation Format

Share Document