scholarly journals Comparison of Behaviour in Different Liquids and in Cells of Gold Nanorods and Spherical Nanoparticles Modified by Linear Polyethyleneimine and Bovine Serum Albumin

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Inna A. Pyshnaya ◽  
Kristina V. Razum ◽  
Julia E. Poletaeva ◽  
Dmitrii V. Pyshnyi ◽  
Marina A. Zenkova ◽  
...  

Gold nanorods (GNRs) are considered one of the most promising forms of nanoparticles for nanobiotechnology; however, the problem of their toxicity is currently not resolved. We synthesised GNRs, modified with linear polyethyleneimine (PEI-GNRs), and examined their physicochemical and some biological properties in comparison with GNRs modified with BSA and spherical gold nanoparticles (sGNPs) modified with the same agents. The influence of the buffer, cell culture media, and serum on hydrodynamic diameter and zeta potential of all GNPs was studied. Simultaneously, the size, shape, and formation of a corona were examined by transmission electron microscopy (TEM). PEI-GNRs and GNPs were nontoxic for BHK-21 and HeLa cells (MTT test). Penetration of all GNPs into BHK-21, melanoma B16, and HeLa cells was examined after 30 min, 3 h, and 24 h of incubation using TEM ultrathin sections. PEI-GNRs and PEI-sGNPs demonstrated fast and active penetration into cells by caveolin-dependent and lipid raft-mediated endocytosis and accumulated in endosomes and lysosomes. BSA-modified GNPs showed prolonged flotation and a significant delay in cell penetration. The results show that the charge of initial NPs determines penetration into cells. Thus, the designed PEI-GNRs were nontoxic and stable in cell culture media and could efficiently penetrate cells.

2020 ◽  
Vol 60 ◽  
pp. 101965
Author(s):  
Nouf N. Mahmoud ◽  
Rana Abu-Dahab ◽  
Maha Abdallah ◽  
Sabaa Al-Dabash ◽  
Duaa Abuarqoub ◽  
...  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
KB Killday ◽  
AS Freund ◽  
C Fischer ◽  
KL Colson

2020 ◽  
Author(s):  
Dario Brambilla ◽  
Laura Sola ◽  
Elisa Chiodi ◽  
Natasa Zarovni ◽  
Diogo Fortunato ◽  
...  

Extracellular vesicles (EVs) have attracted great interest among researchers due to their role in cell-cell communication, disease diagnosis, and drug delivery. In spite of their potential in the medical field, there is no consensus on the best method for separating microvesicles from cell culture supernatant and complex biological fluids. Obtaining a good recovery yield and preserving physical characteristics is critical for the diagnostic and therapeutic use of EVs. The separation is made complex by the fact that blood and cell culture media, contain a large number of nanoparticles in the same size range. Methods that exploit immunoaffinity capture provide high purity samples and overcome the issues of currently used separation methods. However, the release of captured nanovesicles requires harsh conditions that hinder their use in certain types of downstream analysis. Herein, a novel capture and release approach for small extracellular vesicles (sEVs), based on DNAdirected immobilization of antiCD63 antibody is presented. The flexible DNAlinker increases the capture efficiency and allows releasing of EVs by exploiting the endonucleasic activity of DNAse I. This separation protocol works under mild conditions, enabling the release of intact vesicles that can be successfully analyzed by imaging techniques. In this article sEVs recovered from plasma were characterized by established techniques for EVs analysis including nanoparticle tracking and transmission electron microscopy.<br>


2021 ◽  
pp. 106811
Author(s):  
Yuanbin Guo ◽  
Ming Shi ◽  
Xiujuan Liu ◽  
Huagang Liang ◽  
Liming Gao ◽  
...  

2015 ◽  
Vol 99 (11) ◽  
pp. 4645-4657 ◽  
Author(s):  
David Reinhart ◽  
Lukas Damjanovic ◽  
Christian Kaisermayer ◽  
Renate Kunert

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1258
Author(s):  
Xueting Jiang ◽  
Pragney Deme ◽  
Rajat Gupta ◽  
Dmitry Litvinov ◽  
Kathryn Burge ◽  
...  

Both pro- and antiatherosclerotic effects have been ascribed to dietary peroxidized lipids. Confusion on the role of peroxidized lipids in atherosclerotic cardiovascular disease is punctuated by a lack of understanding regarding the metabolic fate and potential physiological effects of dietary peroxidized lipids and their decomposition products. This study sought to determine the metabolic fate and physiological ramifications of 13-hydroperoxyoctadecadienoic acid (13-HPODE) and 13-HODE (13-hydroxyoctadecadienoic acid) supplementation in intestinal and hepatic cell lines, as well as any effects resulting from 13-HPODE or 13-HODE degradation products. In the presence of Caco-2 cells, 13-HPODE was rapidly reduced to 13-HODE. Upon entering the cell, 13-HODE appears to undergo decomposition, followed by esterification. Moreover, 13-HPODE undergoes autodecomposition to produce aldehydes such as 9-oxononanoic acid (9-ONA). Results indicate that 9-ONA was oxidized to azelaic acid (AzA) rapidly in cell culture media, but AzA was poorly absorbed by intestinal cells and remained detectable in cell culture media for up to 18 h. An increased apolipoprotein A1 (ApoA1) secretion was observed in Caco-2 cells in the presence of 13-HPODE, 9-ONA, and AzA, whereas such induction was not observed in HepG2 cells. However, 13-HPODE treatments suppressed paraoxonase 1 (PON1) activity, suggesting the induction of ApoA1 secretion by 13-HPODE may not represent functional high-density lipoprotein (HDL) capable of reducing oxidative stress. Alternatively, AzA induced both ApoA1 secretion and PON1 activity while suppressing ApoB secretion in differentiated Caco-2 cells but not in HepG2. These results suggest oxidation of 9-ONA to AzA might be an important phenomenon, resulting in the accumulation of potentially beneficial dietary peroxidized lipid-derived aldehydes.


2021 ◽  
Author(s):  
Ayman Chmayssem ◽  
Lauriane Petit ◽  
Nicolas Verplanck ◽  
Véronique Mourier ◽  
Séverine Vignoud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document