scholarly journals Neuroprotective Properties of the Standardized Extract fromCamellia sinensis(Green Tea) and Its Main Bioactive Components, Epicatechin and Epigallocatechin Gallate, in the 6-OHDA Model of Parkinson’s Disease

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Natália Bitu Pinto ◽  
Bruno da Silva Alexandre ◽  
Kelly Rose Tavares Neves ◽  
Aline Holanda Silva ◽  
Luzia Kalyne A. M. Leal ◽  
...  

Camellia sinensis(green tea) is largely consumed, mainly in Asia. It possesses several biological effects such as antioxidant and anti-inflammatory properties. The objectives were to investigate the neuroprotective actions of the standardized extract (CS), epicatechin (EC) and epigallocatechin gallate (EGCG), on a model of Parkinson’s disease. Male Wistar rats were divided into SO (sham-operated controls), untreated 6-OHDA-lesioned and 6-OHDA-lesioned treated for 2 weeks with CS (25, 50, or 100 mg/kg), EC (10 mg/kg), or EGCG (10 mg/kg) groups. One hour after the last administration, animals were submitted to behavioral tests and euthanized and their striata and hippocampi were dissected for neurochemical (DA, DOPAC, and HVA) and antioxidant activity determinations, as well as immunohistochemistry evaluations (TH, COX-2, and iNOS). The results showed that CS and catechins reverted behavioral changes, indicating neuroprotection manifested as decreased rotational behavior, increased locomotor activity, antidepressive effects, and improvement of cognitive dysfunction, as compared to the untreated 6-OHDA-lesioned group. Besides, CS, EP, and EGCG reversed the striatal oxidative stress and immunohistochemistry alterations. These results show that the neuroprotective effects of CS and its catechins are probably and in great part due to its powerful antioxidant and anti-inflammatory properties, pointing out their potential for the prevention and treatment of PD.

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Kelly Rose Tavares Neves ◽  
Hélio Vitoriano Nobre ◽  
Luzia Kalyne A. M. Leal ◽  
Geanne Matos de Andrade ◽  
Gerly Anne de Castro Brito ◽  
...  

Pentoxifylline (PTX) is a phosphodiesterase inhibitor with anti-TNF-alpha activity, associated with its anti-inflammatory action. Considering Parkinson’s disease (PD) as a neuroinflammatory disorder, the objectives were to evaluate PTX neuroprotective properties, in a model of PD. Male Wistar rats, divided into sham-operated (SO), untreated 6-OHDA, and 6-OHDA treated with PTX (10, 25, and 50 mg/kg) groups, received a unilateral 6-OHDA injection, except the SO group administered with saline. Treatments started 24 h after surgery and continued for 15 days when the animals were submitted to apomorphine-induced rotations, open field, and forced swimming tests. At the next day, they were euthanized and their striata processed for neurochemical (DA and DOPAC determinations), histological, and immunohistochemical (Fluoro-Jade, TH, DAT, OX-42, TNF-alpha, COX-2, and iNOS) studies. PTX reversed the behavioral changes observed in the untreated 6-OHDA animals. Furthermore, PTX partially reversed the decrease in DA contents and improved neuronal viability. In addition, decreases in immunostaining for TH and dopamine transporter (DAT) were reversed. The untreated 6-OHDA group showed intense OX-42, TNF-alpha, COX-2, and iNOS immunoreactivities, which were attenuated by PTX. In conclusion, we demonstrated a neuroprotective effect of PTX, possibly related to its anti-inflammatory and antioxidant actions, indicating its potential as an adjunct treatment for PD.


2020 ◽  
Author(s):  
Nasia Antoniou ◽  
Kanella Prodromidou ◽  
Georgia Kouroupi ◽  
Martina Samiotaki ◽  
George Panayotou ◽  
...  

AbstractCombining high throughput screening approaches with induced pluripotent stem cell (iPSC)-based disease models represents a promising unbiased strategy to identify therapies for neurodegenerative disorders. Here we applied high content imaging on iPSC-derived neurons from patients with familial Parkinson’s disease bearing the G209A (p.A53T) α-synuclein (αSyn) mutation and launched a screening campaign on a small kinase inhibitor library. We thus identified the multi-kinase inhibitor BX795 that at a single dose effectively restores disease-associated neurodegenerative phenotypes. Proteomics profiling mapped the molecular pathways underlying the neuroprotective effects of BX795 that comprised a cohort of 118 protein-mediators of the core biological processes of RNA metabolism, protein synthesis, modification and clearance, and stress response, all linked to the mTORC1 signaling hub. In agreement, expression of human p.A53T-αSyn in neuron-like cells affected key components of the mTORC1 pathway resulting in aberrant protein synthesis that was restored in the presence of BX795 with concurrent facilitation of autophagy. Taken together, we have developed an adaptable platform based on p.A53T iPSC-derived neurons for drug screening and identified a promising small molecule with potent neuroprotective actions as candidate therapeutic for PD and other protein conformational disorders.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Luiz Eduardo Mateus Brandão ◽  
Diana Aline Morais Ferreira Nôga ◽  
Aline Lima Dierschnabel ◽  
Clarissa Loureiro das Chagas Campêlo ◽  
Ywlliane da Silva Rodrigues Meurer ◽  
...  

Passiflora cincinnata Masters is a Brazilian native species of passionflower. This genus is known in the American continent folk medicine for its diuretic and analgesic properties. Nevertheless, few studies investigated possible biological effects of P. cincinnata extracts. Further, evidence of antioxidant actions encourages the investigation of possible neuroprotective effects in animal models of neurodegenerative diseases. This study investigates the effect of the P. cincinnata ethanolic extract (PAS) on mice submitted to a progressive model of Parkinson’s disease (PD) induced by reserpine. Male (6-month-old) mice received reserpine (0.1 mg/kg, s.c.), every other day, for 40 days, with or without a concomitant treatment with daily injections of PAS (25 mg/kg, i.p.). Catalepsy, open field, oral movements, and plus-maze discriminative avoidance evaluations were performed across treatment, and immunohistochemistry for tyrosine hydroxylase was conducted at the end. The results showed that PAS treatment delayed the onset of motor impairments and prevented the occurrence of increased catalepsy behavior in the premotor phase. However, PAS administration did not modify reserpine-induced cognitive impairments. Moreover, PAS prevented the decrease in tyrosine hydroxylase immunostaining in the substantia nigra pars compacta (SNpc) induced by reserpine. Taken together, our results suggested that PAS exerted a neuroprotective effect in a progressive model of PD.


2021 ◽  
Vol 11 (12) ◽  
pp. 1573
Author(s):  
Samay Prakash ◽  
Wayne G. Carter

Currently, there are no pharmacological treatments able to reverse nigral degeneration in Parkinson’s disease (PD), hence the unmet need for the provision of neuroprotective agents. Cannabis-derived phytocannabinoids (CDCs) and resveratrol (RSV) may be useful neuroprotective agents for PD due to their anti-oxidative and anti-inflammatory properties. To evaluate this, we undertook a systematic review of the scientific literature to assess the neuroprotective effects of CDCs and RSV treatments in pre-clinical in vivo animal models of PD. The literature databases MEDLINE, EMBASE, PsychINFO, PubMed, and Web of Science core collection were systematically searched to cover relevant studies. A total of 1034 publications were analyzed, of which 18 met the eligibility criteria for this review. Collectively, the majority of PD rodent studies demonstrated that treatment with CDCs or RSV produced a significant improvement in motor function and mitigated the loss of dopaminergic neurons. Biochemical analysis of rodent brain tissue suggested that neuroprotection was mediated by anti-oxidative, anti-inflammatory, and anti-apoptotic mechanisms. This review highlights the neuroprotective potential of CDCs and RSV for in vivo models of PD and therefore suggests their potential translation to human clinical trials to either ameliorate PD progression and/or be implemented as a prophylactic means to reduce the risk of development of PD.


2020 ◽  
Author(s):  
Chenyu Zhang ◽  
Miao Zhao ◽  
Bingwei Wang ◽  
Zhijie Su ◽  
Bingbing Guo ◽  
...  

Abstract Background: Parkinson’s disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNc), accompanied by chronic neuroinflammation, oxidative stress, and widespread accumulation of α-synuclein. Celastrol (Cel), a potent anti-inflammatory and anti-oxidative pentacyclic triterpene, has emerged as a neuroprotective agent. However, the mechanisms by which celastrol is neuroprotective in PD has not yet been elucidated. Methods: The MPTP and AAV-mediated human wild-type α-syn overexpression within SNc induced PD mouse models were employed in this study. By using multiple genetically modified mice (Nrf2-KO, NLRP3-KO and Caspase1-KO), we identified that celastrol effectively inhibited the NLRP3 inflammasome activation, mitigated motor deficits and nigrostriatal dopaminergic degeneration through Nrf2-NLRP3-Caspase1 pathway. Results: Here we show that celastrol protected against the loss of dopaminergic neurons, mitigated the neuroinflammation and motor deficits in both MPTP-induced PD mouse model and AAV-mediated human α-syn overexpression PD model. Whole-genome deep sequencing analysis reveals that Nrf2, NLRP3 and Caspase1 in SNc may be associated with the neuroprotective actions of celastrol in PD. Conclusions: These findings suggest that Nrf2-NLRP3-Caspase1 axis may be a key target of celastrol in PD treatment, and highlight the favorable properties linked to neuroprotection of celastrol, making celastrol as a promising disease-modifying agent for PD.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1551 ◽  
Author(s):  
Valeria C. Gonçalves ◽  
Daniel J. L. L. Pinheiro ◽  
Tomás de la Rosa ◽  
Antônio-Carlos G. de Almeida ◽  
Fúlvio A. Scorza ◽  
...  

Patients with Parkinson’s disease (PD) manifest nonmotor and motor symptoms. Autonomic cardiovascular dysregulation is a common nonmotor manifestation associated with increased morbimortality. Conventional clinical treatment alleviates motor signs but does not change disease progression and fails in handling nonmotor features. Nutrition is a key modifiable determinant of chronic disease. This study aimed to assess the effects of propolis on cardiological features, heart rate (HR) and heart rate variability (HRV) and on nigrostriatal dopaminergic damage, detected by tyrosine hydroxylase (TH) immunoreactivity, in the 6-hydroxydopamine (6-OHDA) rat model of PD. Male Wistar rats were injected bilaterally with 6-OHDA or saline into the striatum and were treated with propolis or water for 40 days. Autonomic function was assessed by time domain parameters (standard deviation of all normal-to-normal intervals (SDNN) and square root of the mean of the squared differences between adjacent normal RR intervals (RMSSD)) of HRV calculated from electrocardiogram recordings. Reductions in HR (p = 1.47 × 10−19), SDNN (p = 3.42 × 10−10) and RMSSD (p = 8.2 × 10−6) detected in parkinsonian rats were reverted by propolis. Propolis attenuated neuronal loss in the substantia nigra (p = 5.66 × 10−15) and reduced striatal fiber degeneration (p = 7.4 × 10−5) in 6-OHDA-injured rats, which also showed significant weight gain (p = 1.07 × 10−5) in comparison to 6-OHDA-lesioned counterparts. Propolis confers cardioprotection and neuroprotection in the 6-OHDA rat model of PD.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 789
Author(s):  
Ittetsu Kin ◽  
Tatsuya Sasaki ◽  
Takao Yasuhara ◽  
Masahiro Kameda ◽  
Takashi Agari ◽  
...  

Background: The major surgical treatment for Parkinson’s disease (PD) is deep brain stimulation (DBS), but a less invasive treatment is desired. Vagus nerve stimulation (VNS) is a relatively safe treatment without cerebral invasiveness. In this study, we developed a wireless controllable electrical stimulator to examine the efficacy of VNS on PD model rats. Methods: Adult female Sprague-Dawley rats underwent placement of a cuff-type electrode and stimulator on the vagus nerve. Following which, 6-hydroxydopamine (6-OHDA) was administered into the left striatum to prepare a PD model. VNS was started immediately after 6-OHDA administration and continued for 14 days. We evaluated the therapeutic effects of VNS with behavioral and immunohistochemical outcome assays under different stimulation intensity (0.1, 0.25, 0.5 and 1 mA). Results: VNS with 0.25–0.5 mA intensity remarkably improved behavioral impairment, preserved dopamine neurons, reduced inflammatory glial cells, and increased noradrenergic neurons. On the other hand, VNS with 0.1 mA and 1 mA intensity did not display significant therapeutic efficacy. Conclusions: VNS with 0.25–0.5 mA intensity has anti-inflammatory and neuroprotective effects on PD model rats induced by 6-OHDA administration. In addition, we were able to confirm the practicality and effectiveness of the new experimental device.


Sign in / Sign up

Export Citation Format

Share Document