scholarly journals Pentoxifylline Neuroprotective Effects Are Possibly Related to Its Anti-Inflammatory and TNF-Alpha Inhibitory Properties, in the 6-OHDA Model of Parkinson’s Disease

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Kelly Rose Tavares Neves ◽  
Hélio Vitoriano Nobre ◽  
Luzia Kalyne A. M. Leal ◽  
Geanne Matos de Andrade ◽  
Gerly Anne de Castro Brito ◽  
...  

Pentoxifylline (PTX) is a phosphodiesterase inhibitor with anti-TNF-alpha activity, associated with its anti-inflammatory action. Considering Parkinson’s disease (PD) as a neuroinflammatory disorder, the objectives were to evaluate PTX neuroprotective properties, in a model of PD. Male Wistar rats, divided into sham-operated (SO), untreated 6-OHDA, and 6-OHDA treated with PTX (10, 25, and 50 mg/kg) groups, received a unilateral 6-OHDA injection, except the SO group administered with saline. Treatments started 24 h after surgery and continued for 15 days when the animals were submitted to apomorphine-induced rotations, open field, and forced swimming tests. At the next day, they were euthanized and their striata processed for neurochemical (DA and DOPAC determinations), histological, and immunohistochemical (Fluoro-Jade, TH, DAT, OX-42, TNF-alpha, COX-2, and iNOS) studies. PTX reversed the behavioral changes observed in the untreated 6-OHDA animals. Furthermore, PTX partially reversed the decrease in DA contents and improved neuronal viability. In addition, decreases in immunostaining for TH and dopamine transporter (DAT) were reversed. The untreated 6-OHDA group showed intense OX-42, TNF-alpha, COX-2, and iNOS immunoreactivities, which were attenuated by PTX. In conclusion, we demonstrated a neuroprotective effect of PTX, possibly related to its anti-inflammatory and antioxidant actions, indicating its potential as an adjunct treatment for PD.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Natália Bitu Pinto ◽  
Bruno da Silva Alexandre ◽  
Kelly Rose Tavares Neves ◽  
Aline Holanda Silva ◽  
Luzia Kalyne A. M. Leal ◽  
...  

Camellia sinensis(green tea) is largely consumed, mainly in Asia. It possesses several biological effects such as antioxidant and anti-inflammatory properties. The objectives were to investigate the neuroprotective actions of the standardized extract (CS), epicatechin (EC) and epigallocatechin gallate (EGCG), on a model of Parkinson’s disease. Male Wistar rats were divided into SO (sham-operated controls), untreated 6-OHDA-lesioned and 6-OHDA-lesioned treated for 2 weeks with CS (25, 50, or 100 mg/kg), EC (10 mg/kg), or EGCG (10 mg/kg) groups. One hour after the last administration, animals were submitted to behavioral tests and euthanized and their striata and hippocampi were dissected for neurochemical (DA, DOPAC, and HVA) and antioxidant activity determinations, as well as immunohistochemistry evaluations (TH, COX-2, and iNOS). The results showed that CS and catechins reverted behavioral changes, indicating neuroprotection manifested as decreased rotational behavior, increased locomotor activity, antidepressive effects, and improvement of cognitive dysfunction, as compared to the untreated 6-OHDA-lesioned group. Besides, CS, EP, and EGCG reversed the striatal oxidative stress and immunohistochemistry alterations. These results show that the neuroprotective effects of CS and its catechins are probably and in great part due to its powerful antioxidant and anti-inflammatory properties, pointing out their potential for the prevention and treatment of PD.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Maria Elizabeth Pereira Nobre ◽  
Alyne Oliveira Correia ◽  
Francisco Nilson Maciel Mendonça ◽  
Luiz Ricardo Araújo Uchoa ◽  
Jessica Tamara Nunes Vasconcelos ◽  
...  

Background. Omega-3 (ω3) administration was shown to protect against hypoxic-ischemic injury. The objectives were to study the neuroprotective effects ofω3, in a model of global ischemia.Methods. Male Wistar rats were subjected to carotid occlusion (30 min), followed by reperfusion. The groups were SO, untreated ischemic and ischemic treated rats withω3 (5 and 10 mg/kg, 7 days). The SO and untreated ischemic animals were orally treated with 1% cremophor and, 1 h after the last administration, they were behaviorally tested and euthanized for neurochemical (DA, DOPAC, and NE determinations), histological (Fluoro jade staining), and immunohistochemical (TNF-alpha, COX-2 and iNOS) evaluations. The data were analyzed by ANOVA and Newman-Keuls as thepost hoctest.Results. Ischemia increased the locomotor activity and rearing behavior that were partly reversed byω3. Ischemia decreased striatal DA and DOPAC contents and increased NE contents, effects reversed byω3. This drug protected hippocampal neuron degeneration, as observed by Fluoro-Jade staining, and the increased immunostainings for TNF-alpha, COX-2, and iNOS were partly or totally blocked byω3.Conclusion. This study showed a neuroprotective effect ofω3, in great part due to its anti-inflammatory properties, stimulating translational studies focusing on its use in clinic for stroke managing.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Renrong Wei ◽  
Cuiping Rong ◽  
Qingfeng Xie ◽  
Shouhai Wu ◽  
Yuchao Feng ◽  
...  

Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra (SN)-striatum circuit, which is associated with glial activation and consequent chronic neuroinflammation. Optimized Yinxieling Formula (OYF) is a Chinese medicine that exerts therapeutical effect and antiinflammation property on psoriasis. Our previous study has proven that pretreatment with OYF could regulate glia-mediated inflammation in an acute mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Given that PD is a chronic degeneration disorder, this study applied another PD animal model induced by striatal injection of 6-hydroxydopamine (6-OHDA) to mimic the progressive damage of the SN-striatum dopamine system in rats. The OYF was administrated in the manner of pretreatment plus treatment. The effects of the OYF on motor behaviors were assessed with the apomorphine-induced rotation test and adjusting steps test. To confirm the effect of OYF on dopaminergic neurons and glia activation in this model, we analyzed the expression of tyrosine hydroxylase (TH) and glia markers, ionized calcium-binding adapter molecule 1 (Iba-1), and glial fibrillary acidic protein (GFAP) in the SN region of the rat PD model. Inflammation-associated factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were further evaluated in this model and in interferon-γ- (INF-γ-) induced murine macrophages RAW264.7 cells. The results from the in vivo study showed that OYF reversed the motor behavioral dysfunction in 6-OHDA-induced PD rats, upregulated the TH expression, decreased the immunoreactivity of Iba-1 and GFAP, and downregulated the mRNA levels of TNF-α and COX-2. The OYF also trended to decrease the mRNA levels of IL-1β and iNOS in vivo. The results from the in vitro study showed that OYF significantly decreased the mRNA levels of TNF-α, IL-1β, IL-6, iNOS, and COX-2. Therefore, this study suggests that OYF exerts antiinflammatory effects, which might be related to the protection of dopaminergic neurons in 6-OHDA-induced chronic neurotoxicity.


2015 ◽  
Vol 26 (24) ◽  
pp. 4478-4491 ◽  
Author(s):  
BK. Binukumar ◽  
Varsha Shukla ◽  
Niranjana D. Amin ◽  
Philip Grant ◽  
M. Bhaskar ◽  
...  

Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by the loss of dopamine neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunction. Recent evidence indicates that cyclin-dependent kinase 5 (Cdk5) is inappropriately activated in several neurodegenerative conditions, including PD. To date, strategies to specifically inhibit Cdk5 hyperactivity have not been successful without affecting normal Cdk5 activity. Previously we reported that TFP5 peptide has neuroprotective effects in animal models of Alzheimer’s disease. Here we show that TFP5/TP5 selective inhibition of Cdk5/p25 hyperactivation in vivo and in vitro rescues nigrostriatal dopaminergic neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) in a mouse model of PD. TP5 peptide treatment also blocked dopamine depletion in the striatum and improved gait dysfunction after MPTP administration. The neuroprotective effect of TFP5/TP5 peptide is also associated with marked reduction in neuroinflammation and apoptosis. Here we show selective inhibition of Cdk5/p25 ­hyperactivation by TFP5/TP5 peptide, which identifies the kinase as a potential therapeutic target to reduce neurodegeneration in Parkinson’s disease.


Antioxidants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 49 ◽  
Author(s):  
Lyubka P. Tancheva ◽  
Maria I. Lazarova ◽  
Albena V. Alexandrova ◽  
Stela T. Dragomanova ◽  
Ferdinando Nicoletti ◽  
...  

We compared the neuroprotective action of three natural bio-antioxidants (AOs): ellagic acid (EA), α-lipoic acid (LA), and myrtenal (Myrt) in an experimental model of Parkinson’s disease (PD) that was induced in male Wistar rats through an intrastriatal injection of 6-hydroxydopamine (6-OHDA). The animals were divided into five groups: the sham-operated (SO) control group; striatal 6-OHDA-lesioned control group; and three groups of 6-OHDA-lesioned rats pre-treated for five days with EA, LA, and Myrt (50 mg/kg; intraperitoneally- i.p.), respectively. On the 2nd and the 3rd week post lesion, the animals were subjected to several behavioral tests: apomorphine-induced rotation; rotarod; and the passive avoidance test. Biochemical evaluation included assessment of main oxidative stress parameters as well as dopamine (DA) levels in brain homogenates. The results showed that all three test compounds improved learning and memory performance as well as neuromuscular coordination. Biochemical assays showed that all three compounds substantially decreased lipid peroxidation (LPO) levels, and restored catalase (CAT) activity and DA levels that were impaired by the challenge with 6-OHDA. Based on these results, we can conclude that the studied AOs demonstrate properties that are consistent with significant antiparkinsonian effects. The most powerful neuroprotective effect was observed with Myrt, and this work represents the first demonstration of its anti-Parkinsonian impact.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Luiz Eduardo Mateus Brandão ◽  
Diana Aline Morais Ferreira Nôga ◽  
Aline Lima Dierschnabel ◽  
Clarissa Loureiro das Chagas Campêlo ◽  
Ywlliane da Silva Rodrigues Meurer ◽  
...  

Passiflora cincinnata Masters is a Brazilian native species of passionflower. This genus is known in the American continent folk medicine for its diuretic and analgesic properties. Nevertheless, few studies investigated possible biological effects of P. cincinnata extracts. Further, evidence of antioxidant actions encourages the investigation of possible neuroprotective effects in animal models of neurodegenerative diseases. This study investigates the effect of the P. cincinnata ethanolic extract (PAS) on mice submitted to a progressive model of Parkinson’s disease (PD) induced by reserpine. Male (6-month-old) mice received reserpine (0.1 mg/kg, s.c.), every other day, for 40 days, with or without a concomitant treatment with daily injections of PAS (25 mg/kg, i.p.). Catalepsy, open field, oral movements, and plus-maze discriminative avoidance evaluations were performed across treatment, and immunohistochemistry for tyrosine hydroxylase was conducted at the end. The results showed that PAS treatment delayed the onset of motor impairments and prevented the occurrence of increased catalepsy behavior in the premotor phase. However, PAS administration did not modify reserpine-induced cognitive impairments. Moreover, PAS prevented the decrease in tyrosine hydroxylase immunostaining in the substantia nigra pars compacta (SNpc) induced by reserpine. Taken together, our results suggested that PAS exerted a neuroprotective effect in a progressive model of PD.


2020 ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's. The drugs currently used to treat PD cannot inhibit the development of PD, and long-term use produces severe drug resistance and adverse reaction. Artemisinin (ART) is an active ingredient of Artemisia annua and has a neuroprotective effect, but the mechanism is still unclear. This study was designed to investigate the neuroprotective effect of ART in MPP+-treated SH-SY5Y cells. Results There was no significant cytotoxicity when the ART concentration was under. 40μM. The 20μM ART for 24h could increase the cell viability by reducing oxidative stress and cell apoptosis in MPP+-treated SH-SY5Y cell. In addition, immunoblot and immunofluorescence results showed that MPP+ treatment increased the expression of Beclin1, LC3II/LC3I and decreased the expression of P62, while ART can reverse the changes caused by MPP+. Discussion More and more researches reported that ART and its derivates have neuroprotective effects through anti-oxidant and anti-apoptosis. we found that pre-treated cells with 20μM ART for 4h could significantly increase the viability in Parkinson's disease cell model. The oxidative stress and apoptosis were the main reason for the degeneration of dopaminergic neurons, while artemisinin can attenuate oxidative stress and apoptosis in MPP+-lesioned dopaminergic neurons. The levels of autophagy proteins LC3II/I, Beclin1 and P62 also showed that MPP+ increased the autophagy level, and pre-treatment with ART decreased the autophagy level, which may be the pathological mechanism for artemisinin to reduce oxidative stress damage and apoptosis. Conclusions These results indicate that ART exerts a positive effect on MPP+-treated SH-SY5Y cells in terms of anti-oxidative stress and anti-apoptosis. These effects may be related to autophagy. These findings contribute to a better understanding of the critical role of ART in PD treatment.


2021 ◽  
Vol 11 (12) ◽  
pp. 1573
Author(s):  
Samay Prakash ◽  
Wayne G. Carter

Currently, there are no pharmacological treatments able to reverse nigral degeneration in Parkinson’s disease (PD), hence the unmet need for the provision of neuroprotective agents. Cannabis-derived phytocannabinoids (CDCs) and resveratrol (RSV) may be useful neuroprotective agents for PD due to their anti-oxidative and anti-inflammatory properties. To evaluate this, we undertook a systematic review of the scientific literature to assess the neuroprotective effects of CDCs and RSV treatments in pre-clinical in vivo animal models of PD. The literature databases MEDLINE, EMBASE, PsychINFO, PubMed, and Web of Science core collection were systematically searched to cover relevant studies. A total of 1034 publications were analyzed, of which 18 met the eligibility criteria for this review. Collectively, the majority of PD rodent studies demonstrated that treatment with CDCs or RSV produced a significant improvement in motor function and mitigated the loss of dopaminergic neurons. Biochemical analysis of rodent brain tissue suggested that neuroprotection was mediated by anti-oxidative, anti-inflammatory, and anti-apoptotic mechanisms. This review highlights the neuroprotective potential of CDCs and RSV for in vivo models of PD and therefore suggests their potential translation to human clinical trials to either ameliorate PD progression and/or be implemented as a prophylactic means to reduce the risk of development of PD.


2021 ◽  
Author(s):  
Xiao Yan Sheng ◽  
Shui Yuan Yang ◽  
Xiao Min Wen ◽  
Xin Zhang ◽  
Yong Feng Ye ◽  
...  

Abstract Background: Shende’an tablet (SDA) is a newly capsuled Chinese herbal formula derived from the Chinese traditional medicine Zhengan Xifeng Decoction which is approved for the treatment of neurasthenia and insomnia in China. This study aimed to investigate the neuroprotective effects of SDA against Parkinson’s disease (PD) in vitro and in vivo.Methods: In the present work, the neuroprotective effects and mechanism of SDA were evaluated in the cellular PD model. Male C57BL/6J mice were subject to a partial MPTP lesion alongside treatment with SDA. Behavioural test and tyrosine-hydroxylase immunohistochemistry were used to evaluate nigrostriatal tract integrity. HPLC analysis and Western blotting were used to assess the effect of SDA on dopamine metabolism and the expression of HO-1, PGC-1α and Nrf2, respectively.Results: Our results demonstrated that SDA had neuroprotective effect in dopaminergic PC12 cells with 6-OHDA lesion. It had also displayed efficient dopaminergic neuronal protection and motor behavior alleviation properties in MPTP-induced PD mice. In the PC12 cells and MPTP-induced Parkinson’s disease animal models, SDA was highly efficacious in α-synuclein clearance associated with the activation of PGC-1α/Nrf2 signal pathway.Conclusion: SDA demonstrated potential as a future therapeutic modality in PD through protecting dopamine neurons and alleviating the motor symptoms, mediated by the activation of PGC-1α/Nrf2 signal pathway.


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Eleanor Considine ◽  
Lucy Yin ◽  
Mitra Hartmann

Parkinson’s disease is a progressive nervous system disorder that produces both motor and nonmotor symptoms. This literature review begins by examining evidence for several possible origins for the disease:  does it begin in the brain and progress to the gut, or vice versa, or does it begin in both places concurrently?  Next, we examine several environmental factors that have been shown to either increase or decrease risk of Parkinson’s disease. These are primarily nutritional factors, specifically caffeine, nicotine, and dairy products. Studies in both animals and humans provide weak evidence that increased consumption of low fat dairy is associated with an increased risk of Parkinson’s disease development. Additionally, there is strong evidence that nicotine has a neuroprotective effect which also lowers the risk.  Finally, there is similarly strong evidence that caffeine exerts neuroprotective effects which lower the overall risk of developing Parkinson’s disease.


Sign in / Sign up

Export Citation Format

Share Document