scholarly journals Oxidative Stress Alters miRNA and Gene Expression Profiles in Villous First Trimester Trophoblasts

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Courtney E. Cross ◽  
Mai F. Tolba ◽  
Catherine M. Rondelli ◽  
Meixiang Xu ◽  
Sherif Z. Abdel-Rahman

The relationship between oxidative stress and miRNA changes in placenta as a potential mechanism involved in preeclampsia (PE) is not fully elucidated. We investigated the impact of oxidative stress on miRNAs and mRNA expression profiles of genes associated with PE in villous 3A first trimester trophoblast cells exposed to H2O2at 12 different concentrations (0-1 mM) for 0.5, 4, 24, and 48 h. Cytotoxicity, determined using the SRB assay, was used to calculate the IC50of H2O2. RNA was extracted after 4 h exposure to H2O2for miRNA and gene expression profiling. H2O2exerted a concentration- and time-dependent cytotoxicity on 3A trophoblast cells. Short-term exposure of 3A cells to low concentration of H2O2(5% of IC50) significantly altered miRNA profile as evidenced by significant changes in 195 out of 595 evaluable miRNAs. Tool for annotations of microRNAs (TAM) analysis indicated that these altered miRNAs fall into 43 clusters and 34 families, with 41 functions identified. Exposure to H2O2altered mRNA expression of 22 out of 84 key genes involved in dysregulation of placental development. In conclusion, short-term exposure of villous first trimester trophoblasts to low concentrations of H2O2significantly alters miRNA profile and expression of genes implicated in placental development.

2015 ◽  
Vol 27 (1) ◽  
pp. 204
Author(s):  
C. Cheuquemán ◽  
P. Loren ◽  
M. Arias ◽  
J. Risopatrón ◽  
R. Felmer ◽  
...  

Recent studies have shown that short-term exposure of oocytes to stressors such as hydrostatic pressure, osmotic stress, and oxidative stress might induce stress tolerance in embryos. In this research we studied the effect of short-term exposure of bovine in vitro-matured cumulus-oocyte complexes (COC) with a nitric oxide donor (SNP) on IVF, embryo development, embryo quality, and relative gene expression related to cell redox state regulation. The COC were selected and matured in TCM 199 supplemented with 10% inactivated FBS, 6 mg mL–1 of LH, 6 mg mL–1 of FSH, 1 mg mL–1 of oestradiol, and 0.2 mmol of pyruvate and then incubated for 22 to 24 h at 38.5°C in 5% CO2 in a humidified atmosphere (n = 12). Before IVF, mature COC were incubated during 1 h with different concentration of sodium nitroprusside, SNP (control without SNP, 10–6 M, 10–5 M, and 10–4 M SNP) in maturation media at 38.5°C and 5% CO2 in a humidified atmosphere. For IVF procedure, oocytes of each treatment and sperm of one bull were co-incubated for 18 to 20 h at 38.5°C and 5% CO2. Presumptive zygotes were separately cultured until Day 7 under mineral oil at 38.5°C and 5% CO2, 5%O2, and 90% N2 in a humidified atmosphere. Embryo quality was analysed by staining with CDX2 antibody for trophectoderm cells and compared with total embryo cells stained with Hoechst 33342. Relative gene expression for each treatment were evaluated after RNA extraction and cDNA synthesis in Stratagene MX 3000P real-time equipment with Agilent qPCR software MX pro 4.1 version. Differences between experimental groups (n = 12) were measured using a one-way ANOVA test in the STATGRAPHICS plus 5.1 version software. P < 0.05 was considered statistically significant. Cleavage percentage at 72 h post-insemination was significantly different between the control and 10–4 M SNP group (82 ± 8.4% v. 77 ± 7.1%, respectively) and between 10–5 M and 10–4 M SNP group (84.9 ± 4.1% v. 77 ± 7.1%, respectively). Blastocyst percentage at 7 days of culture was significantly different between control and 10–4 M SNP group (34.1 ± 7.8% v. 26.2 ± 4.9%, respectively). Embryo development between control group and treatments was similar within early, expanded, and hatched blastocyst percentage. Embryo quality of expanded blastocyst was similar between control group and treatments (ICM: TE). No significant differences in gene expression after SNP exposure was observed (iNOS, eNOS, nNOS, PRDX5, HSP70, HSP90, HIF1A, BCL2A). Oocytes incubated with a high concentration of SNP showed lower cleavage and blastocyst rates, showing that this treatment was deleterious for in vitro embryo production in bovine. However, there were no significant differences on embryo quality assessed by ICM : TE ratio and/or in gene expression pattern of 7-day cultured expanded blastocysts.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
N. Fatima ◽  
N. Sheikh ◽  
A. R. Satoskar ◽  
T. Akhtar ◽  
A. Tayyeb ◽  
...  

Tacrolimus (TAC) is an immunosuppressive drug, optimally used for liver, kidney, and heart transplant to avoid immune rejection. In retrospect, a multitude of studies have reported effects of TAC, such as nephrotoxicity, diabetes, and other complications. However, limited information is available regarding short-term exposure of TAC on the liver. Therefore, the present study was designed to unravel the effects of short-term exposure of TAC on a rat model. The animal model was established by TAC administration for 6, 12, 24, and 48 h time points. Liver histopathological changes were observed with PAS-D, reticulin stain, and immunostaining of PCNA and CK-7 coupled with glycogen quantification in a liver homogenate. TUNEL assay was performed to evaluate the DNA damage in the liver. Concentration of GSH and activities of SOD and CAT in the serum were measured to assess the antioxidant status, whereas liver tissue MDA level was measured as a biomarker of oxidative stress. Hepatic gene expression analysis of IL-10, IL-13, SOCS-2, and SOCS-3 was performed by RT-PCR. Results revealed marked changes in liver architecture of all TAC-treated groups, as evidenced by sinusoid dilation, hepatocyte derangement, glycogen deposition, and collapsed reticulin fibers. Significant increase in PCNA and CK-7 immunostaining along with the presence of TUNEL-positive cells was revealed in treatment groups as compared to the control group. Serum antioxidant enzyme status was markedly decreased, whereas the liver MDA level was increased in TAC treatment groups indicating oxidative stress induction. The gene expression profile of cytokines was significantly upregulated in treatment groups highlighting an inflammatory response. In conclusion, results of the current study propose that even a short-term TAC exposure can induce change in antioxidant status and lipid peroxidation. Therefore, these factors should be considered to avoid and minimize immunosuppression-related issues in a prolonged course of treatment.


2008 ◽  
Vol 32 (2) ◽  
pp. 219-228 ◽  
Author(s):  
Adeel Safdar ◽  
Nicholas J. Yardley ◽  
Rodney Snow ◽  
Simon Melov ◽  
Mark A. Tarnopolsky

Creatine monohydrate (CrM) supplementation has been shown to increase fat-free mass and muscle power output possibly via cell swelling. Little is known about the cellular response to CrM. We investigated the effect of short-term CrM supplementation on global and targeted mRNA expression and protein content in human skeletal muscle. In a randomized, placebo-controlled, crossover, double-blind design, 12 young, healthy, nonobese men were supplemented with either a placebo (PL) or CrM (loading phase, 20 g/day × 3 days; maintenance phase, 5 g/day × 7 days) for 10 days. Following a 28-day washout period, subjects were put on the alternate supplementation for 10 days. Muscle biopsies of the vastus lateralis were obtained and were assessed for mRNA expression (cDNA microarrays + real-time PCR) and protein content (Kinetworks KPKS 1.0 Protein Kinase screen). CrM supplementation significantly increased fat-free mass, total body water, and body weight of the participants ( P < 0.05). Also, CrM supplementation significantly upregulated (1.3- to 5.0-fold) the mRNA content of genes and protein content of kinases involved in osmosensing and signal transduction, cytoskeleton remodeling, protein and glycogen synthesis regulation, satellite cell proliferation and differentiation, DNA replication and repair, RNA transcription control, and cell survival. We are the first to report this large-scale gene expression in the skeletal muscle with short-term CrM supplementation, a response that suggests changes in cellular osmolarity.


2018 ◽  
Vol 189 (5) ◽  
pp. 529-540 ◽  
Author(s):  
Andreas Lamkowski ◽  
Matthias Kreitlow ◽  
Jörg Radunz ◽  
Martin Willenbockel ◽  
Frank Sabath ◽  
...  

2021 ◽  
Vol 11 (12) ◽  
pp. 1291
Author(s):  
Deni Ramljak ◽  
Martina Vukoja ◽  
Marina Curlin ◽  
Katarina Vukojevic ◽  
Maja Barbaric ◽  
...  

Healthy and controlled immune response in COVID-19 is crucial for mild forms of the disease. Although CD8+ T cells play important role in this response, there is still a lack of studies showing the gene expression profiles in those cells at the beginning of the disease as potential predictors of more severe forms after the first week. We investigated a proportion of different subpopulations of CD8+ T cells and their gene expression patterns for cytotoxic proteins (perforin-1 (PRF1), granulysin (GNLY), granzyme B (GZMB), granzyme A (GZMA), granzyme K (GZMK)), cytokine interferon-γ (IFN-γ), and apoptotic protein Fas ligand (FASL) in CD8+ T cells from peripheral blood in first weeks of SARS-CoV-2 infection. Sixteen COVID-19 patients and nine healthy controls were included. The absolute counts of total lymphocytes (p = 0.007), CD3+ (p = 0.05), and CD8+ T cells (p = 0.01) in COVID-19 patients were significantly decreased compared to healthy controls. In COVID-19 patients in CD8+ T cell compartment, we observed lower frequency effector memory 1 (EM1) (p = 0.06) and effector memory 4 (EM4) (p < 0.001) CD8+ T cells. Higher mRNA expression of PRF1 (p = 0.05) and lower mRNA expression of FASL (p = 0.05) at the fifth day of the disease were found in COVID-19 patients compared to healthy controls. mRNA expression of PRF1 (p < 0.001) and IFN-γ (p < 0.001) was significantly downregulated in the first week of disease in COVID-19 patients who progressed to moderate and severe forms after the first week, compared to patients with mild symptoms during the entire disease course. GZMK (p < 0.01) and FASL (p < 0.01) mRNA expression was downregulated in all COVID-19 patients compared to healthy controls. Our results can lead to a better understanding of the inappropriate immune response of CD8+ T cells in SARS-CoV2 with the faster progression of the disease.


2019 ◽  
Vol 128 ◽  
pp. 193-200 ◽  
Author(s):  
Julian Krauskopf ◽  
Karin van Veldhoven ◽  
Marc Chadeau-Hyam ◽  
Roel Vermeulen ◽  
Glòria Carrasco-Turigas ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Michał Dobrakowski ◽  
Marta Boroń ◽  
Ewa Birkner ◽  
Aleksandra Kasperczyk ◽  
Ewa Chwalińska ◽  
...  

The present study was designed to explore the possible influence of subacute exposure to lead on the levels of selected essential metals, selected proteins related to them, and oxidative stress parameters in occupationally exposed workers. The study population included 36 males occupationally exposed to lead for 36 to 44 days. Their blood lead level at the beginning of the study was 10.7 ± 7.67 μg/dl and increased to the level of 49.1 ± 14.1 μg/dl at the end of the study. The levels of calcium, magnesium, and zinc increased significantly after lead exposure compared to baseline by 3%, 3%, and 8%, respectively, while the level of copper decreased significantly by 7%. The malondialdehyde (MDA) level and the activities of catalase (CAT) and superoxide dismutase (SOD) did not change due to lead exposure. However, the level of lipid hydroperoxides (LPH) in serum increased significantly by 46%, while the level of erythrocyte lipofuscin (LPS) decreased by 13%. The serum levels of essential metals are modified by a short-term exposure to lead in occupationally exposed workers. A short-term exposure to lead induces oxidative stress associated with elevated levels of LPH but not MDA.


Endocrinology ◽  
2006 ◽  
Vol 147 (5) ◽  
pp. 2490-2495 ◽  
Author(s):  
Wenjiao Li ◽  
Lu Gao ◽  
Yan Wang ◽  
Tao Duan ◽  
Leslie Myatt ◽  
...  

Chorion is the most abundant site of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) expression within intrauterine tissues. It is important to study the regulation of 11β-HSD1 expression in the chorion in terms of local cortisol production during pregnancy. Using real-time PCR and enzyme activity assay, we found that cortisol (1 μm) and IL-1β (10 ng/ml) for 24 h significantly increased 11β-HSD1 mRNA expression and reductase activity in cultured human chorionic trophoblasts. A further significant increase of 11β-HSD1 mRNA expression and reductase activity was observed with cotreatment of cortisol and IL-1β. To explore the mechanism of induction, 11β-HSD1 promoter was cloned into pGL3 plasmid expressing a luciferase reporter gene. By transfecting the constructed vector into WISH cells, an amnion-derived cell line, we found that cortisol (1 μm) or IL-1β (10 ng/ml) significantly increased reporter gene expression. Likewise, an additional increase in reporter gene expression was observed with cotreatment of cortisol and IL-β. To explore the physiological significance of 11β-HSD1 induction in the chorion, we studied the effect of cortisol on cytosolic phospholipase A2 and cyclooxygenase 2 expression. We found that treatment of chorionic trophoblast cells with cortisol (1 μm) induced both cytosolic phospholipase A2 and cyclooxygenase 2 mRNA expression. We conclude that cortisol up-regulates 11β-HSD1 expression through induction of promoter activity, and the effect was enhanced by IL-1β, suggesting that more biologically active glucocorticoids could be generated in the fetal membranes in the presence of infection, which may consequently feed forward in up-regulation of prostaglandin synthesis.


Sign in / Sign up

Export Citation Format

Share Document