scholarly journals Zebrafish as a Model to Study the Role of Peroxisome Proliferating-Activated Receptors in Adipogenesis and Obesity

PPAR Research ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Marjo J. Den Broeder ◽  
Victoria A. Kopylova ◽  
Leonie M. Kamminga ◽  
Juliette Legler

The Peroxisome Proliferator-Activated Receptors (PPARs) PPARA and PPARD are regulators of lipid metabolism with important roles in energy release through lipid breakdown, while PPARG plays a key role in lipid storage and adipogenesis. The aim of this review is to describe the role of PPARs in lipid metabolism, adipogenesis, and obesity and evaluate the zebrafish as an emerging vertebrate model to study the function of PPARs. Zebrafish are an appropriate model to study human diseases, including obesity and related metabolic diseases, as pathways important for adipogenesis and lipid metabolism which are conserved between mammals and fish. This review synthesizes knowledge on the role of PPARs in zebrafish and focuses on the putative function of PPARs in zebrafish adipogenesis. Usingin silicoanalysis, we confirm the presence of five PPARs (pparaa,pparab,pparda,ppardb, andpparg) in the zebrafish genome with 67–74% identity to human and mouse PPARs. During development,pparda/bparalogs andppargshow mRNA expression around the swim bladder and pancreas, the region where adipocytes first develop, whereasppargis detectable in adipocytes at 15 days post fertilization (dpf). This review indicates that the zebrafish is a promising model to investigate the specific functions of PPARs in adipogenesis and obesity.

PPAR Research ◽  
2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Angela Tesse ◽  
Ramaroson Andriantsitohaina ◽  
Thierry Ragot

Activation of peroxisome proliferator-activated receptors (PPARs), and particularly of PPARαand PPARγ, using selective agonists, is currently used in the treatment of metabolic diseases such as hypertriglyceridemia and type 2 diabetes mellitus. PPARαand PPARγanti-inflammatory, antiproliferative and antiangiogenic properties in cardiovascular cells were extensively clarified in a variety of in vitro and in vivo models. In contrast, the role of PPARδin cardiovascular system is poorly understood. Prostacyclin, the predominant prostanoid released by vascular cells, is a putative endogenous agonist for PPARδ, but only recently PPARδselective synthetic agonists were found, improving studies about the physiological and pathophysiological roles of PPARδactivation. Recent reports suggest that the PPARδactivation may play a pivotal role to regulate inflammation, apoptosis, and cell proliferation, suggesting that this transcriptional factor could become an interesting pharmacological target to regulate cardiovascular cell apoptosis, proliferation, inflammation, and metabolism.


2013 ◽  
Vol 88 (6) ◽  
pp. 1029-1035 ◽  
Author(s):  
Emerson de Andrade Lima ◽  
Mariana Modesto Dantas de Andrade Lima ◽  
Cláudia Diniz Lopes Marques ◽  
Angela Luzia Branco Pinto Duarte ◽  
Ivan da Rocha Pita ◽  
...  

Psoriasis is a polygenic, inflammatory and progressive disease, characterized by an abnormal differentiation and hyperproliferation of keratinocytes, associated with impaired immunologic activation and systemic disorders, while psoriatic arthritis is a chronic inflammatory articular disease. Pathophysiology of psoriasis comprises a dysfunction of the immune system cells with an interactive network between cells and cytokines supporting the initiation and perpetuation of disease and leading to inflammation of skin, enthesis and joints. Recent studies have shown an important role of systemic inflammation in the development of atherosclerosis. Corroborating these findings, patients with severe Psoriasis have marked incidence of psoriatic arthritis, cardiovascular diseases, hypertension, dyslipidemia, obesity and diabetes mellitus, showing an increased risk for acute myocardial infarction, which suggests that the condition is not restricted to the skin. Nuclear receptors are ligand-dependent transcription factors, whose activation affects genes that control vital processes. Among them the peroxisome proliferator-activated receptor is responsible for establishing the relationship between lipids, metabolic diseases and innate immunity. In the skin, peroxisome proliferator-activated receptors have an important effect in keratinocyte homeostasis, suggesting a role in diseases such as psoriasis. The peroxisome proliferator-activated receptors agonists represent a relevant source of research in the treatment of skin conditions, however more clinical studies are needed to define the potential response of these drugs in patients with psoriasis and psoriatic arthritis.


Author(s):  
Rana A. Alaaeddine ◽  
Perihan A. Elzahhar ◽  
Ibrahim AlZaim ◽  
Wassim Abou-Kheir ◽  
Ahmed S.F. Belal ◽  
...  

: Emerging evidence supports an intertwining framework for the involvement of different inflammatory pathways in a common pathological background for a number of disorders. Of importance are pathways involving arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 15-lipoxygenase (15-LOX). Both enzyme activities and their products are implicated in a range of pathophysiological processes encompassing metabolic impairment leading to adipose inflammation and the subsequent vascular and neurological disorders, in addition to various pro-and anti-tumorigenic effects. A further layer of complexity is encountered by the disparate, and often reciprocal, modulatory effect COX-2 and 15-LOX activities and metabolites exert on each other or on other cellular targets, the most prominent of which is peroxisome proliferator-activated receptor gamma (PPARγ). Thus, effective therapeutic intervention with such multifaceted disorders requires the simultaneous modulation of more than one target. Here, we describe the role of COX-2, 15-LOX, and PPARγ in cancer and complications of metabolic disorders, highlight the value of designing multi-target directed ligands (MTDLs) modifying their activity, and summarize the available literature regarding the rationale and feasibility of design and synthesis of these ligands together with their known biological effects. We speculate on the potential impact of MTDLs in these disorders as well as emphasize the need for structured future effort to translate these early results facilitating the adoption of these, and similar, molecules in clinical research.


2020 ◽  
Vol 28 ◽  
Author(s):  
Seyed Mohammad Nabavi ◽  
Kasi Pandima Devi ◽  
Sethuraman Sathya ◽  
Ana Sanches-Silva ◽  
Listos Joanna ◽  
...  

: Obesity is a major health concern for a growing fraction of the population, with the prevalence of obesity and its related metabolic disorders not being fully understood. Over the last decade, many attempts have been undertaken to understand the mechanisms at the basis of this condition, in which the accumulation of fat occurring in adipose tissue, leads to the pathogenesis of obesity related disorders. Among the most recent studies, those on Peroxisome Proliferator Activated Receptors (PPARs) revealed that these nuclear receptor proteins acting as transcription factors, among others, regulate the expression of genes involved in energy, lipid, and glucose metabolisms, and chronic inflammation. The three different isotypes of PPARs, with different tissue expression and ligand binding specificity, exert similar or overlapping functions directly or indirectly linked to obesity. In this study, we reviewed the available scientific reports concerning the PPARs structure and functions, especially in obesity, considering both natural and synthetic ligands and their role in the therapy of obesity and obesity-associated disorders. In the whole, the collected data show that there are both natural and synthetic compounds that show beneficial promising activity as PPAR agonists in chronic diseases related to obesity.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 629
Author(s):  
Jorge Gutiérrez-Cuevas ◽  
Ana Sandoval-Rodriguez ◽  
Alejandra Meza-Rios ◽  
Hugo Christian Monroy-Ramírez ◽  
Marina Galicia-Moreno ◽  
...  

Obesity is defined as excessive body fat accumulation, and worldwide obesity has nearly tripled since 1975. Excess of free fatty acids (FFAs) and triglycerides in obese individuals promote ectopic lipid accumulation in the liver, skeletal muscle tissue, and heart, among others, inducing insulin resistance, hypertension, metabolic syndrome, type 2 diabetes (T2D), atherosclerosis, and cardiovascular disease (CVD). These diseases are promoted by visceral white adipocyte tissue (WAT) dysfunction through an increase in pro-inflammatory adipokines, oxidative stress, activation of the renin-angiotensin-aldosterone system (RAAS), and adverse changes in the gut microbiome. In the heart, obesity and T2D induce changes in substrate utilization, tissue metabolism, oxidative stress, and inflammation, leading to myocardial fibrosis and ultimately cardiac dysfunction. Peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of carbohydrate and lipid metabolism, also improve insulin sensitivity, triglyceride levels, inflammation, and oxidative stress. The purpose of this review is to provide an update on the molecular mechanisms involved in obesity-linked CVD pathophysiology, considering pro-inflammatory cytokines, adipokines, and hormones, as well as the role of oxidative stress, inflammation, and PPARs. In addition, cell lines and animal models, biomarkers, gut microbiota dysbiosis, epigenetic modifications, and current therapeutic treatments in CVD associated with obesity are outlined in this paper.


1993 ◽  
Vol 684 (1 Zinc-Finger P) ◽  
pp. 157-173 ◽  
Author(s):  
HANSJÖRG KELLER ◽  
ABDERRAHIM MAHFOUDI ◽  
CHRISTINE DREYER ◽  
ABDELMADJID K. HIHI ◽  
JEFFREY MEDIN ◽  
...  

PPAR Research ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Li Fang ◽  
Man Zhang ◽  
Yanhui Li ◽  
Yan Liu ◽  
Qinghua Cui ◽  
...  

The peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of the nuclear receptor superfamily. Upon ligand binding, PPARs activate target gene transcription and regulate a variety of important physiological processes such as lipid metabolism, inflammation, and wound healing. Here, we describe the first database of PPAR target genes, PPARgene. Among the 225 experimentally verified PPAR target genes, 83 are for PPARα, 83 are for PPARβ/δ, and 104 are for PPARγ. Detailed information including tissue types, species, and reference PubMed IDs was also provided. In addition, we developed a machine learning method to predict novel PPAR target genes by integratingin silicoPPAR-responsive element (PPRE) analysis with high throughput gene expression data. Fivefold cross validation showed that the performance of this prediction method was significantly improved compared to thein silicoPPRE analysis method. The prediction tool is also implemented in the PPARgene database.


Sign in / Sign up

Export Citation Format

Share Document