scholarly journals Seismic Response and Evaluation of SDOF Self-Centering Friction Damping Braces Subjected to Several Earthquake Ground Motions

2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Jong Wan Hu ◽  
Myung-Hyun Noh

This paper mainly deals with seismic response and performance for self-centering friction damping braces (SFDBs) subjected to several maximum- or design-leveled earthquake ground motions. The self-centering friction damping brace members consist of core recentering components fabricated with superelastic shape memory alloy wires and energy dissipation devices achieved through shear friction mechanism. As compared to the conventional brace members for use in the steel concentrically braced frame structure, these self-centering friction damping brace members make the best use of their representative characteristics to minimize residual deformations and to withstand earthquake loads without member replacement. The configuration and response mechanism of self-centering friction damping brace systems are firstly described in this study, and then parametric investigations are conducted through nonlinear time-history analyses performed on numerical single degree-of-freedom spring models. After observing analysis results, adequate design methodologies that optimally account for recentering capability and energy dissipation according to their comparative parameters are intended to be suggested in order to take advantage of energy capacity and to minimize residual deformation simultaneously.

Author(s):  
Canxing Qiu ◽  
Jiawang Liu ◽  
Jun Teng ◽  
Zuohua Li ◽  
Xiuli Du

Shape memory alloys (SMAs) gained increasing attentions from the perspective of seismic protection, primarily because of their excellent superelasticity, satisfactory damping and high fatigue life. However, the superelastic strain of SMAs has an upper limit, beyond which the material completes the austenite to martensite phase transformation and is followed by noticeable strain hardening. The strain hardening behavior would not only induce high force demand to the protected structures, but also cause unrecoverable deformation. More importantly, the SMAs may fracture if the deformation demand exceeds their capacity under severe earthquakes. In the case of installing SMA braces (SMABs) in the multi-story concentrically braced frames (CBFs), the material failure would lead to the malfunction of SMABs and this further causes building collapse. The friction mechanism could behave as a “fuse” through capping the strength demand at a constant level. Therefore, this paper suggests connecting the SMAB with a friction damper to achieve a novel brace, i.e. the SMA-friction damping brace (SMAFDB). A proof-of-concept test was carried out on a homemade specimen and the test results validated the novel brace behaves in a desirable manner. In addition, to explore the seismic response characteristics of the SMAFDB within structures, a six-story CBF equipped with SMAFDBs was designed and compared against those incorporated with SMABs or friction damping braces (FDBs) at the frequently occurred earthquake (FOE), design basis earthquake (DBE) and maximum considered earthquake (MCE). The comparative results show the SMAFDB is superior to the counterparts. Under the FOE and DBE ground motions, the SMAFDBs successfully eliminated residual deformations as the SMABs do, and achieved identical maximum interstory drift as the FDBs. Under the MCE ground motions, the SMAFDBs not only well addressed the brace failure problem that was possibly encountered in the SMABs, but also better controlled residual deformation than the FDBs.


2012 ◽  
Vol 594-597 ◽  
pp. 886-890 ◽  
Author(s):  
Gan Hong ◽  
Mei Li ◽  
Yi Zhen Yang

Abstract. In the paper, take full account of energy dissipation operating characteristics. Interlayer shear-frame structure for the analysis of the Wilson-Θmethod ELASTOPLASTIC schedule, the design of a nonlinear dynamic time history analysis procedure. On this basis, taking into account the restoring force characteristics of the energy dissipation system, the inflection point in the restoring force model treatment, to avoid a result of the calculation results of distortion due to the iterative error. A frame structure seismic response time history analysis results show that: the framework of the energy dissipation significantly lower than the seismic response of the common framework, and its role in the earthquake when more significant.


2020 ◽  
pp. 136943322098273
Author(s):  
Baoxi Song ◽  
Weizhi Xu ◽  
Dongsheng Du ◽  
Shuguang Wang ◽  
Weiwei Li ◽  
...  

This paper provides a practical design method for hybrid unbonded post-tensioned precast concrete joints. Such joints featured with self-centering capacities have been widely favored in recent years. However, the absence of design methods hinders their further promotion. To solve the issue, two methods for calculating mechanical behavior of the joints were first studied: characteristic points method and iterative method. The effectiveness of the methods was verified by the existing test results. On this basis, a joint design method considering both yield bearing capacity and energy dissipation capacity was proposed. Moreover, to facilitate design, some factors affecting the bearing capacity were discussed. A five-story frame structure was designed by the proposed design method, and the influence of two design factors on structural response was analyzed by utilizing nonlinear time-history method. The analysis results show that: with the increase of energy dissipation factor αs, the post-earthquake residual deformation of the structure tends to increase linearly, while the accumulated damage of the structure will decrease continuously; both overdesign and underdesign of bearing capacity of the joint are unfavorable; and near-field earthquake may cause irreparable damage to structural columns, making the residual deformation of structures contrary to the self-centering capacity of joints, which shall be considered during engineering design.


1998 ◽  
Vol 14 (3) ◽  
pp. 125-135 ◽  
Author(s):  
K. C. Chang ◽  
M. H. Tsai ◽  
Y. H. Chang ◽  
M. L. Lai

ABSTRACTViscoelastic (VE) dampers have been shown to be an effective energy dissipation device for structures subjected to seismic excitations. When a VE damper is under shear deformation, the temperature within the damper material will rise due to the conversion of mechanical energy into heat. The effect of temperature rise in the VE damper on a viscoelastically damped structure may be significant because the damper stiffness can decrease due to the temperature rise in the VE damper and its energy dissipation capacity may reduce under strong earthquake ground motions. This paper is intended to quantify the temperature rise effect. A VE element which can accurately describe the frequency and temperature dependent behavior of the test results of a VE damper is first presented. The effect of temperature rise within the VE material is included. Seismic response analyses of a viscoelastically damped structure which was studied extensively by shaking table tests are carried out by two analytical methods: a frequency domain analysis and a time domain analysis. Both analyses consider the effects of frequency and ambient temperature of the VE dampers. The frequency domain approach is computationally more efficient. However, it neglects the effect of temperature rise in the analysis. The time domain method is computationally less efficient. However, it can explicitly calculate the temperature rise during the earthquake and evaluate its influence on the structural responses. Finally, parametric studies on the effect of temperature rise within the VE damper material on the seismic response of a viscoelastically damped structure are analyzed and its implications on practical applications are discussed.


Author(s):  
Mostafa Farajian ◽  
Mohammad Iman Khodakarami ◽  
Denise-Penelope N. Kontoni

Soil-structure interaction (SSI) could affect the seismic response of structures. Since liquid storage tanks are vital structures and must continue their operation under severe earthquakes, their seismic behavior should be studied. Accordingly, the seismic response of liquid storage tanks founded on half space soil is scrutinized under different earthquake ground motions. To better comparison, the six considered ground motions are classified based on their pulse like characteristics, into two groups, named far and near fault ground motions. To model the liquid storage tanks, the simplified mass-spring model is used and the liquid is modeled as two lumped masses known as sloshing and impulsive, and the interaction of fluid and structure is considered using two coupled springs and dashpots. The SSI effect, also, is considered using a coupled spring and dashpot. Besides, four types of soils are used to consider wide variety of soil properties. To this end, after deriving the equations of motion, the MATLAB programming is employed to obtain the time history responses. Results show that although the SSI effect leads to decrease the impulsive displacement, overturning moment and normalized base shear, the sloshing (or convective) displacement is not affected by such effects due to its long period.


2012 ◽  
Vol 166-169 ◽  
pp. 2138-2142
Author(s):  
Hui Min Wang ◽  
Liang Cao ◽  
Ji Yao ◽  
Zhi Liang Wang

For the complex features in the form of a flat L-shaped reinforced concrete frame structure, the three dimensional FEM model of the structure was established in this paper, and the dynamic characteristics of the structure was analyzed, the participation equivalent mass of every mode’s order was obtained. Seismic response analysis for the structure was carried out with modal decomposition spectrum method and time history analysis method, the weak layer of the structure was pointed out and the reference for the structural design was provided.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Roberto Javier Merino Vela ◽  
Emanuele Brunesi ◽  
Roberto Nascimbene

Nonstructural components play an important role in the correct functioning of industrial facilities, which may suffer greatly from earthquake-induced actions, as demonstrated by past seismic events. Therefore, the correct evaluation of seismic demands acting upon them is of utmost importance when assessing or designing an industrial complex exposed to seismic hazard. Among others, nonlinear time history analyses (NLTHA) of structural systems including nonstructural elements and floor response spectra are well-known methods for computing these actions, the former being more accurate and the latter being less onerous. This work focuses on deriving floor spectra for a steel special concentrically braced frame (SCBF), which is a common type of lateral-load resisting system for industrial frames. The results are used to compute the seismic actions on a small liquid storage tank mounted on the case study frame. Additionally, the results are compared to those obtained by modeling the structure and the tank together, that is, by modeling the tank explicitly and incorporating it within the model of the support structure. To this end, a simple model, consisting of two uncoupled single degree-of-freedom systems, is used for the tank. The floor spectra resulting from both approaches are compared to establish differences in the behavior of the structure and nonstructural element/component. Finally, the seismic demand on the tank—obtained by direct and indirect analyses—is compared to that obtained by applying ASCE 7-10 and Eurocode 8 prescriptions.


Author(s):  
Wenai Shen ◽  
Zhentao Long ◽  
Heng Wang ◽  
Hongping Zhu

Abstract Tuned inerter dampers (TID) have been demonstrated as efficient energy dissipation devices for seismic response control. However, its potential capability for energy harvesting remains largely unexplored. Here, we present a theoretical analysis of the power of a structure-TID system subjected to earthquake ground motions. The analytical solutions of the average damping power of the system are derived for considering white noise base excitations and the Kanai-Tajimi earthquake model, respectively. Comparisons of the numerical results of a Monte Carlo simulation and the theoretical predictions verify the accuracy of the analytical solutions. Besides, we uncover the influence of the TID parameters on the damping power and output power of the system. The optimal frequency ratio of the TID for maximizing its output power slightly differs from that for seismic response control, and the former varies with site conditions. In contrast, both the damping power and output power are not sensitive to the damping ratio of the TID. For short-period structures, a small inertance-to-mass ratio (µ) of the TID is beneficial to maximize its output power, while seismic response control requires a large µ. For long-period structures, the damping power and output power are not sensitive to the µ. Generally, a structure-TID system on a soft soil site absorbs more energy from a given earthquake and is capable of harvesting more energy than that on a hard soil site. This study may help develop new strategies for self-powered control and monitoring in civil structures.


2011 ◽  
Vol 250-253 ◽  
pp. 2897-2901
Author(s):  
Jie Ying Sui ◽  
Chen Ming Xu ◽  
Wen Feng Liu

In this paper, a new type SMA damper making use of SMA wire was designed. When the damper was in a tensile, compressed or tensional condition, the SMA wire is always in the condition of tension. The passive energy dissipation control of seismic vibration makes use of the super elasticity and high damping of tensile SMA wire. On the basis of the study of a 10-story building, five groups of the placement of the damper are used in time-history dynamic analysis .By contrasting the five different results, the influencing rules of the placement of the damper on seismic response of the structure can be concluded.


Sign in / Sign up

Export Citation Format

Share Document