scholarly journals Early-Age Strength Measurement of Shotcrete

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Abbas Mohajerani ◽  
Daniel Rodrigues ◽  
Christian Ricciuti ◽  
Christopher Wilson

Shotcrete or sprayed concrete is a special concrete designed for spraying onto a surface, as a construction material. With shotcrete application as a ground support system ever-present in both mining and tunnelling sectors, a major requirement of drive progression is to determine when it is safe to reenter beneath freshly sprayed concrete. Accurately determining this time is of paramount importance. Generally, this reentry time is based on measuring the developing strength of shotcrete until an adequate strength value is reached. The issue with current practice is that there is no widely accepted or generally preferred method that accurately assesses the shotcrete lining’s true early-age strength. However, there are a number of strength tests that are commercially available and used in the industry; these include the soil penetrometer, needle penetrometer, bolt screws, beam end testers, and drilled core samples. This paper researches into these testing methods and their characteristics in order to determine their accuracy, testing ranges, and suitability for in situ use in the tunnelling and mining industry. The investigation ultimately reveals that current methods all have substantial shortcomings. Based on these findings, recommendations are proposed for the applicable use of the current testing methods and recommendations for future improvements.

2019 ◽  
Vol 23 ◽  
pp. 54-57
Author(s):  
Martin Závacký

Sprayed concrete is important construction material in tunnelling. Primary lining is essential in NATM where the sprayed concrete can be loaded by tension due to bending moments. The tension is common reason of failure because concrete has a relatively low tensile strength. The tensile strength is usually determined by splitting tensile test in laboratory. However, the results can be distorted because the specimen is not loaded by pure tension in this case. The paper compares results of concrete tensile strength determined by two methods: indirect by the splitting tensile test and direct by the modified tensile test.


2009 ◽  
Vol 419-420 ◽  
pp. 1-4 ◽  
Author(s):  
Ying Wei Yun ◽  
Ii Young Jang ◽  
Seong Kyum Kim ◽  
Seung Min Park

High-performance concrete (HPC) as a promising construction material has been widely used in infrastructures and high-rise buildings etc. However, its pretty high autogenous shrinkage (AS) especially in its early age becomes one of the key problems endangering long-time durability of HPC structures. This paper carried out the early age AS research of large scaled HPC column specimens by embedded Fiber Bragg-Grating (FBG) strain sensor. Temperature compensation for FBG strain sensor by thermocouple was also attempted in this paper, and the results were reasonable and acceptable comparing with the result compensated by FBG temperature sensor. Reinforcement influence, size effect and temperature effect on HPC AS were also analyzed respectively in this paper.


2017 ◽  
Vol 33 (6) ◽  
pp. 408-412 ◽  
Author(s):  
Hans J. Schlitt ◽  
Christina Hackl ◽  
Sven Arke Lang

1969 ◽  
Vol 8 (54) ◽  
pp. 427-440 ◽  
Author(s):  
R. Perla

AbstractModified versions ofin situstrength tests previously applied to metamorphosed snow were developed to measure the mechanical properties of newly fallen snow during storm periods. A large drop-cone penetrometer, protected from the wind by an aluminum shell, was used to determine snow “hardness”. A lightweight model of the Haefeli ram penetrometer measured “ram numbers”. Shear strengths were obtained from large, light-weight frames. Some preliminary tests were made with a shear vane driven by a torque wrench. A new technique was devised for measuring tensile strength whereby a cantilever beam of snow is undercut until it fails under its own weight. Comparisons between the cantilever test and the shear-frame test show high ratios for tensile to shear strength. Cantilever strength plotted against density shows an order of magnitude variation in strength at all densities.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Walid Edris ◽  
Faris Matalkah ◽  
Bara’ah Rbabah ◽  
Ahmad Abu Sbaih ◽  
Reham Hailat

Abstract This research aims to produce a Compressed Earth Block (CEB) product using locally available soil collected from northern Jordan. The CEB mixture was further stabilized using Portland cement, lime, and sodium silicate. The research significance is based upon the urgent need of most developing countries (e.g. Jordan, Egypt…etc) to build more durable and low-cost houses by using locally available materials. As a result, CEB was identified as a cheap and environmentally friendly construction material. CEB specimens were thoroughly characterized by studying the mechanical properties and durability characteristics. Blocks of 30 x 15 x 8 cm with two holes of 7.5 cm in diameter have a potential for higher enduring, higher compressive strength, better thermal insulation, and lower production cost. Blocks were manufactured with an addition of 8 % for either Portland cement or lime, as well as 2 % of sodium silicate to the soil. The results showed that the addition of 8 % of cement to the CEB achieves satisfactory results in both mechanical and durability properties. Also, the addition of sodium silicate was found to enhance the early-age compressive strength however it affected negatively the durable properties of blocks by increasing the erosion rate and deterioration when exposed to water.


2019 ◽  
Vol 19 (11) ◽  
pp. 7476-7486
Author(s):  
Jinze Du ◽  
Hongyan Zeng ◽  
Enguo Zhou ◽  
Bo Feng ◽  
Chaorong Chen ◽  
...  

The microcapsule nanoparticles were prepared by in-situ copolymerization of hydrotalcites (MAH) with the polymer (MF, PF, PS and PU) monomers, respectively, where the MF-wrapped MAH (MAH@MF) had the best monodispersity. The composites of the microcapsules and EVA were prepared by incorporating the microcapsule nanoparticles into ethylene vinyl acetate (EVA), respectively. To further understand the intrinsic correlation between microcapsule fillers and EVA matrix, molecular dynamics (MD) simulation was introduced to qualitatively analyze the contribution of microcapsule fillers on improving compatibility and mechanical properties of the EVA matrix. The compatibility of microcapsule nanoparticles with EVA matrix were detected in sequence through SEM, DSC and tensile strength tests. And the combustion, thermal behavior and flame retardance were also characterized by TG analyses as well as LOI and UL-94 level. As a result, the MAH@MF filler had the best performances in improving the flame retardancy and mechanical properties among the microcapsule fillers, attributed to high compatibility of the MAH@MF and EVA matrix, which made uniform distribution of the MAH@MF filler due to the reciprocity of triazine functional ring with vinyl acetate linkages.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 624 ◽  
Author(s):  
Hossein Taheri ◽  
Margaret Kilpatrick ◽  
Matthew Norvalls ◽  
Warren J. Harper ◽  
Lucas W. Koester ◽  
...  

Friction stir welding is a method of materials processing that enables the joining of similar and dissimilar materials. The process, as originally designed by The Welding Institute (TWI), provides a unique approach to manufacturing—where materials can be joined in many designs and still retain mechanical properties that are similar to, or greater than, other forms of welding. This process is not free of defects that can alter, limit, and occasionally render the resulting weld unusable. Most common amongst these defects are kissing bonds, wormholes and cracks that are often hidden from visual inspection. To identify these defects, various nondestructive testing methods are being used. This paper presents background to the process of friction stir welding and identifies major process parameters that affect the weld properties, the origin, and types of defects that can occur, and potential nondestructive methods for ex-situ detection and in-situ identification of these potential defects, which can then allow for corrective action to be taken.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 664 ◽  
Author(s):  
Iwona Karbownik ◽  
Olga Rac-Rumijowska ◽  
Marta Fiedot-Toboła ◽  
Tomasz Rybicki ◽  
Helena Teterycz

The paper presents a method of modifying polyacrylonitrile (PAN) fibers using polyaniline (PANI). The PAN fibers were doped with polyaniline that was obtained in two different ways. The first consisted of doping a spinning solution with polyaniline that was synthesized in an aqueous solution (PAN/PANI blended), and the second involved the synthesis of polyaniline directly in the spinning solution (PAN/PANI in situ). The obtained fibers were characterized by the methods: X-ray powder diffraction (XRD), scanning electron microscope (SEM), fourier-transform infrared spectroscopy (FTIR), thermogravimetry (TG) and differential scanning calorimetry (DSC). Analysis of the results showed strong interactions between the nitrile groups of polyacrylonitrile and polyaniline in the PAN/PANI in situ fibers. The results of mechanical strength tests indicated that the performance of the PAN/PANI mixture significantly improved the mechanical parameters of polyaniline, although these fibers had a weaker strength than the unmodified PAN fibers. The fibers obtained as a result of the addition of PANI to PAN were dielectric, whereas the PANI-synthesized in situ were characterized by a mass-specific resistance of 5.47 kΩg/cm2.


2012 ◽  
Vol 24 (8) ◽  
pp. 984-990 ◽  
Author(s):  
Matthew Daly ◽  
Andrew Pequegnat ◽  
Yunhong N Zhou ◽  
Mohammad I Khan

The thermomechanical properties of nickel-titanium shape memory alloys have sparked significant research efforts seeking to exploit their exotic capabilities. Until recently, the performance capabilities of nickel-titanium devices have been inhibited by the retention of only one thermomechanical response. In this article, the application of a novel laser-processing technique is demonstrated to create a monolithic self-positioning nickel-titanium shape memory microgripper. Device actuation and gripping maneuvers were achieved by thermally activating processed material regions which possessed unique phase transformation onset temperatures and thermomechanical recovery characteristics. The existence of each thermomechanical material domain was confirmed through differential scanning calorimetry analysis. Independent thermomechanical recoveries of each embedded shape memory were captured using tensile testing methods. Deployment of each embedded shape memory was achieved using resistive heating, and in situ resistivity measurements were used to monitor progressive phase transformations.


Sign in / Sign up

Export Citation Format

Share Document