scholarly journals Dietary Factors in the Etiology of Parkinson’s Disease

2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Zeynep S. Agim ◽  
Jason R. Cannon

Parkinson’s disease (PD) is the second most common neurodegenerative disorder. The majority of cases do not arise from purely genetic factors, implicating an important role of environmental factors in disease pathogenesis. Well-established environmental toxins important in PD include pesticides, herbicides, and heavy metals. However, many toxicants linked to PD and used in animal models are rarely encountered. In this context, other factors such as dietary components may represent daily exposures and have gained attention as disease modifiers. Severalin vitro, in vivo, and human epidemiological studies have found a variety of dietary factors that modify PD risk. Here, we critically review findings on association between dietary factors, including vitamins, flavonoids, calorie intake, caffeine, alcohol, and metals consumed via food and fatty acids and PD. We have also discussed key data on heterocyclic amines that are produced in high-temperature cooked meat, which is a new emerging field in the assessment of dietary factors in neurological diseases. While more research is clearly needed, significant evidence exists that specific dietary factors can modify PD risk.

2020 ◽  
Author(s):  
Eiji Inoue ◽  
Takahiro Suzuki ◽  
Yasuharu Shimizu ◽  
Keiichi Sudo ◽  
Haruhisa Kawasaki ◽  
...  

AbstractParkinson’s disease (PD) is a common neurodegenerative disorder with motor symptoms linked to the loss of dopaminergic neurons in the brain. α-Synuclein is an aggregation-prone neural protein that plays a role in the pathogenesis of PD. In our previous paper, we found that saffron; the stigma of Crocus sativus Linné (Iridaceae), and its constituents (crocin and crocetin) suppressed aggregation of α-synuclein and promoted the dissociation of α-synuclein fibrils in vitro. In this study, we investigated the effect of dietary saffron and its constituent, crocetin, in vivo on a fly PD model overexpressing several mutant α-synuclein in a tissue-specific manner. Saffron and crocetin significantly suppressed the decrease of climbing ability in the Drosophila overexpressing A30P (A30P fly PD model) or G51D (G51D fly PD model) mutated α-synuclein in neurons. Saffron and crocetin extended the life span in the G51D fly PD model. Saffron suppressed the rough-eyed phenotype and the dispersion of the size histogram of the ocular long axis in A30P fly PD model in eye. Saffron had a cytoprotective effect on a human neuronal cell line with α-synuclein fibrils. These data showed that saffron and its constituent crocetin have protective effects on the progression of PD disease in animals in vivo and suggest that saffron and crocetin can be used to treat PD.


Author(s):  
Love Kumar

Parkinson’s disease (PD) is a common known neurodegenerative disorder with unknown etiology. It was estimated about 0.3% prevalence in the U.S population and enhance to 4 to 5% in older than 85 years. All studies were depending on the molecular docking where all ligands and protein PARK7 (PDB ID: 2RK3) were interacted by docked process. Some natural compounds was selected such as Harmine, Alloxan, Alpha spinasterol, Myrcene, and Vasicinone and PARK7 (PDB ID: 2RK3) protein. According to the PyRx and SWISS ADME result, Harmine was the only ligand which was showing minimum binding affinity. AutoDock Vina software was used for docking process between ligand (Harmine) and receptor protein PARK7 (PDB ID: 2RK3). The result was visualized under PyMol. Harmine was inhibiting the activity of PARK7 (PDB ID: 2RK3) and it may be used for the treatment of PD in future prospect after its in vitro and in vivo studies.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Shankar J. Chinta ◽  
Subramanian Rajagopalan ◽  
Abirami Ganesan ◽  
Julie K. Andersen

Parkinson’s disease (PD) is an age-related neurodegenerative disorder characterized in part by the preferential loss of nigrostriatal dopaminergic neurons. Although the precise etiology of PD is unknown, accumulating evidence suggests that PD involves microglial activation that exerts neurotoxic effects through production of proinflammatory cytokines and increased oxidative and nitrosative stress. Thus, controlling microglial activation has been suggested as a therapeutic target for combating PD. Previously we demonstrated that pharmacological inhibition of a class of enzymes known as prolyl hydroxylases via 3,4-dihydroxybenzoate administration protected against MPTP-induced neurotoxicity, however the exact mechanisms involved were not elucidated. Here we show that this may be due to DHB’s ability to inhibit microglial activation. DHB significantly attenuated LPS-mediated induction of nitric oxide synthase and pro-inflammatory cytokines in murine BV2 microglial cellsin vitroin conjunction with reduced ROS production and activation of NFκB and MAPK pathways possibly due to up-regulation of HO-1 levels. HO-1 inhibition partially abrogates LPS-mediated NFκB activity and subsequent NO induction.In vivo, DHB pre-treatment suppresses microglial activation elicited by MPTP treatment. Our results suggest that DHB’s neuroprotective properties could be due to its ability to dampen induction of microglial activation via induction of HO-1.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Hefeng Zhou ◽  
Min Shao ◽  
Xuanjun Yang ◽  
Chuwen Li ◽  
Guozhen Cui ◽  
...  

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), and there is no cure for it at present. We have previously reported that the tetramethylpyrazine (TMP) derivative T-006 exhibited beneficial effects in Alzheimer’s disease (AD) models. However, its effect on PD remains unclear. In the present study, we investigated the neuroprotective effects and underlying mechanisms of T-006 against 6-hydroxydopamine- (6-OHDA-) induced lesions in in vivo and in vitro PD models. Our results demonstrated that T-006 alleviated mitochondrial membrane potential loss and restored the energy metabolism and mitochondrial biogenesis that were induced by 6-OHDA in PC12 cells. In addition, animal experiments showed that administration of T-006 significantly attenuated the 6-OHDA-induced loss of tyrosine hydroxylase- (TH-) positive neurons in the SNpc, as well as dopaminergic nerve fibers in the striatum, and also increased the concentration of dopamine and its metabolites (DOPAC, HVA) in the striatum. Functional deficits were restored following T-006 treatment in 6-OHDA-lesioned mice, as demonstrated by improved motor coordination and rotational behavior. In addition, we found that the neuroprotective effects of T-006 were mediated, at least in part, by the activation of both the PKA/Akt/GSK-3β and CREB/PGC-1α/NRF-1/TFAM pathways. In summary, our findings demonstrate that T-006 could be developed as a novel neuroprotective agent for PD, and the two pathways might be promising therapeutic targets for PD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Wei Huang ◽  
Qiankun Lv ◽  
Yunfei Xiao ◽  
Zhen Zhong ◽  
Binbin Hu ◽  
...  

Parkinson’s disease is a neurodegenerative disorder with an inflammatory response as the core pathogenic mechanism. Previous human genetics findings support the view that the loss of TREM2 function will aggravate neurodegeneration, and TREM2 is one of the most highly expressed receptors in microglia. However, the role of TREM2 in the inflammatory mechanism of PD is not clear. In our study, it was found both in vivo and in vitro that the activation of microglia not only promoted the secretion of inflammatory factors but also decreased the level of TREM2 and inhibited the occurrence of autophagy. In contrast, an increase in the level of TREM2 decreased the expression of inflammatory factors and enhanced the level of autophagy through the p38 MAPK/mTOR pathway. Moreover, increased TREM2 expression significantly decreased the apoptosis of dopaminergic (DA) neurons and improved the motor ability of PD mice. In summary, TREM2 is an important link between the pathogenesis of PD and inflammation. Our study provides a new view for the mechanism of TREM2 in PD and reveals TREM2 as a potential therapeutic target for PD.


2020 ◽  
Author(s):  
Urmila Maitra ◽  
Thomas Harding ◽  
Qiaoli Liang ◽  
Lukasz Ciesla

AbstractParkinson’s disease (PD) is an age-associated neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons from the midbrain. Epidemiological studies have implicated exposures to environmental toxins like the herbicide, paraquat (PQ) as major contributors to PD etiology in both mammalian and invertebrate models. We have employed a PQ-induced PD model in Drosophila as an inexpensive in vivo platform to screen therapeutics from natural products. We have identified the polymethoxyflavonoid, GardeninA, with neuroprotective potential against PQ-induced parkinsonian symptoms involving reduced survival, mobility defects, and loss of dopaminergic neurons. GardeninA-mediated neuroprotection is not solely dependent on its antioxidant activities but also involves modulation of the neuroinflammatory and cellular death responses. Furthermore, we have successfully detected GardeninA bioavailability in the fly heads after oral administration using ultra-performance liquid chromatography and mass spectrometry. Our findings reveal a molecular mechanistic insight into GardeninA-mediated neuroprotection against environmental toxin-induced PD pathogenesis for novel therapeutic intervention.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Urmila Maitra ◽  
Thomas Harding ◽  
Qiaoli Liang ◽  
Lukasz Ciesla

AbstractParkinson’s disease is an age-associated neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons from the midbrain. Epidemiological studies have implicated exposures to environmental toxins like the herbicide paraquat as major contributors to Parkinson’s disease etiology in both mammalian and invertebrate models. We have employed a paraquat-induced Parkinson’s disease model in Drosophila as an inexpensive in vivo platform to screen therapeutics from natural products. We have identified the polymethoxyflavonoid, GardeninA, with neuroprotective potential against paraquat-induced parkinsonian symptoms involving reduced survival, mobility defects, and loss of dopaminergic neurons. GardeninA-mediated neuroprotection is not solely dependent on its antioxidant activities but also involves modulation of the neuroinflammatory and cellular death responses. Furthermore, we have successfully shown GardeninA bioavailability in the fly heads after oral administration using ultra-performance liquid chromatography and mass spectrometry. Our findings reveal a molecular mechanistic insight into GardeninA-mediated neuroprotection against environmental toxin-induced Parkinson’s disease pathogenesis for novel therapeutic intervention.


2020 ◽  
Vol 21 (22) ◽  
pp. 8421
Author(s):  
Chrysoula Marogianni ◽  
Maria Sokratous ◽  
Efthimios Dardiotis ◽  
Georgios M. Hadjigeorgiou ◽  
Dimitrios Bogdanos ◽  
...  

Parkinson’s disease (PD) is a neurodegenerative disorder, caused by, so far, unknown pathogenetic mechanisms. There is no doubt that pro-inflammatory immune-mediated mechanisms are pivotal to the pathogenicity and progression of the disease. In this review, we highlight the binary role of microglia activation in the pathophysiology of the disorder, both neuroprotective and neuromodulatory. We present how the expression of several cytokines implicated in dopaminergic neurons (DA) degeneration could be used as biomarkers for PD. Viral infections have been studied and correlated to the disease progression, usually operating as trigger factors for the inflammatory process. The gut–brain axis and the possible contribution of the peripheral bowel inflammation to neuronal death, mainly dopaminergic neurons, seems to be a main contributor of brain neuroinflammation. The role of the immune system has also been analyzed implicating a-synuclein in the activation of innate and adaptive immunity. We also discuss therapeutic approaches concerning PD and neuroinflammation, which have been studied in experimental and in vitro models and data stemming from epidemiological studies.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Huynh Kim Thoa Truong ◽  
Man Anh Huynh ◽  
My Dung Vuu ◽  
Thi Phuong Thao Dang

Parkinson’s disease (PD), which is characterized by the decreased motor function and the loss of dopaminergic neurons, is a common neurodegenerative disorder in elders. There have been numerous in vitro and in vivo models developed to study mechanisms of PD and screen potential drug. Recently, dUCH-knockdown Drosophila model has been established and showed potential for screening antioxidants for PD treatment. The dUCH-knockdown Drosophila model of PD mimics most of main PD pathologies such as dopaminergic neurons degeneration, locomotor dysfunction, and shortage of dopamine in the brain. Common purslane (Portulaca oleracea L.) is a nutritious vegetable containing a variety of antioxidants, levodopa, and dopamine, a neurotransmitter closely related to PD. Purslane has been reported to exert neuroprotective effects against several neurotoxins including rotenone and 6-OHDA in PD models. However, the recent data have not provided sufficient evidence for using purslane to treat PD or decelerate disease progression. Therefore, in this study, we utilized dUCH-knockdown fly to evaluate the capacity of purslane extracts for PD treatment. The results showed that purslane extracts improved locomotor ability in the larval stage and decelerated disease progression in the adult stage. Additionally, purslane extracts also reduced dopaminergic neuron degeneration. Taken together, our data strongly demonstrated that purslane extracts effectively rescued PD-like phenotypes in the fly model. This result contributed a foundation for further study on the application of purslane in PD treatment.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Anna Zinger ◽  
Carlos Barcia ◽  
Maria Trinidad Herrero ◽  
Gilles J. Guillemin

Parkinson’s disease (PD) is a common neurodegenerative disorder characterised by loss of dopaminergic neurons and localized neuroinflammation occurring in the midbrain several years before the actual onset of symptoms. Activated microglia themselves release a large number of inflammatory mediators thus perpetuating neuroinflammation and neurotoxicity. The Kynurenine pathway (KP), the main catabolic pathway for tryptophan, is one of the major regulators of the immune response and may also be implicated in the inflammatory response in parkinsonism. The KP generates several neuroactive compounds and therefore has either a neurotoxic or neuroprotective effect. Several of these molecules produced by microglia can activate the N-methyl-D-aspartate (NMDA) receptor-signalling pathway, leading to an excitotoxic response. Previous studies have shown that NMDA antagonists can ease symptoms and exert a neuroprotective effect in PD bothin vivoandin vitro. There are to date several lines of evidence linking some of the KP intermediates and the neuropathogenesis of PD. Moreover, it is likely that pharmacological modulation of the KP will represent a new therapeutic strategy for PD.


Sign in / Sign up

Export Citation Format

Share Document