scholarly journals GardeninA confers neuroprotection against environmental toxin in a Drosophila model of Parkinson’s disease

2020 ◽  
Author(s):  
Urmila Maitra ◽  
Thomas Harding ◽  
Qiaoli Liang ◽  
Lukasz Ciesla

AbstractParkinson’s disease (PD) is an age-associated neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons from the midbrain. Epidemiological studies have implicated exposures to environmental toxins like the herbicide, paraquat (PQ) as major contributors to PD etiology in both mammalian and invertebrate models. We have employed a PQ-induced PD model in Drosophila as an inexpensive in vivo platform to screen therapeutics from natural products. We have identified the polymethoxyflavonoid, GardeninA, with neuroprotective potential against PQ-induced parkinsonian symptoms involving reduced survival, mobility defects, and loss of dopaminergic neurons. GardeninA-mediated neuroprotection is not solely dependent on its antioxidant activities but also involves modulation of the neuroinflammatory and cellular death responses. Furthermore, we have successfully detected GardeninA bioavailability in the fly heads after oral administration using ultra-performance liquid chromatography and mass spectrometry. Our findings reveal a molecular mechanistic insight into GardeninA-mediated neuroprotection against environmental toxin-induced PD pathogenesis for novel therapeutic intervention.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Urmila Maitra ◽  
Thomas Harding ◽  
Qiaoli Liang ◽  
Lukasz Ciesla

AbstractParkinson’s disease is an age-associated neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons from the midbrain. Epidemiological studies have implicated exposures to environmental toxins like the herbicide paraquat as major contributors to Parkinson’s disease etiology in both mammalian and invertebrate models. We have employed a paraquat-induced Parkinson’s disease model in Drosophila as an inexpensive in vivo platform to screen therapeutics from natural products. We have identified the polymethoxyflavonoid, GardeninA, with neuroprotective potential against paraquat-induced parkinsonian symptoms involving reduced survival, mobility defects, and loss of dopaminergic neurons. GardeninA-mediated neuroprotection is not solely dependent on its antioxidant activities but also involves modulation of the neuroinflammatory and cellular death responses. Furthermore, we have successfully shown GardeninA bioavailability in the fly heads after oral administration using ultra-performance liquid chromatography and mass spectrometry. Our findings reveal a molecular mechanistic insight into GardeninA-mediated neuroprotection against environmental toxin-induced Parkinson’s disease pathogenesis for novel therapeutic intervention.


2020 ◽  
Vol 17 (10) ◽  
pp. 1261-1269
Author(s):  
Yasir Hasan Siddique ◽  
Rahul ◽  
Mantasha Idrisi ◽  
Mohd. Shahid

Background: Parkinson’s disease is a common neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta. Introduction: The effects of alpha synuclein, parkin mutation and pharmacological agents have been studied in the Drosophila model. Methods: The effect of cabergoline was studied on the cognitive impairments exhibited by the transgenic Drosophila expressing human alpha-synuclein in the neurons. The PD flies were allowed to feed on the diet having 0.5, 1 and 1.5 μM of cabergoline. Results and Discussion: The exposure of cabergoline not only showed a dose-dependent significant delay in the cognitive impairments but also prevented the loss of dopaminergic neurons. Molecular docking studies showed the positive interaction between cabergoline and alpha-synuclein. Conclusion: The results suggest a protective effect of cabergoline against the cognitive impairments.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Zeynep S. Agim ◽  
Jason R. Cannon

Parkinson’s disease (PD) is the second most common neurodegenerative disorder. The majority of cases do not arise from purely genetic factors, implicating an important role of environmental factors in disease pathogenesis. Well-established environmental toxins important in PD include pesticides, herbicides, and heavy metals. However, many toxicants linked to PD and used in animal models are rarely encountered. In this context, other factors such as dietary components may represent daily exposures and have gained attention as disease modifiers. Severalin vitro, in vivo, and human epidemiological studies have found a variety of dietary factors that modify PD risk. Here, we critically review findings on association between dietary factors, including vitamins, flavonoids, calorie intake, caffeine, alcohol, and metals consumed via food and fatty acids and PD. We have also discussed key data on heterocyclic amines that are produced in high-temperature cooked meat, which is a new emerging field in the assessment of dietary factors in neurological diseases. While more research is clearly needed, significant evidence exists that specific dietary factors can modify PD risk.


2021 ◽  
Vol 15 ◽  
Author(s):  
Wei Huang ◽  
Qiankun Lv ◽  
Yunfei Xiao ◽  
Zhen Zhong ◽  
Binbin Hu ◽  
...  

Parkinson’s disease is a neurodegenerative disorder with an inflammatory response as the core pathogenic mechanism. Previous human genetics findings support the view that the loss of TREM2 function will aggravate neurodegeneration, and TREM2 is one of the most highly expressed receptors in microglia. However, the role of TREM2 in the inflammatory mechanism of PD is not clear. In our study, it was found both in vivo and in vitro that the activation of microglia not only promoted the secretion of inflammatory factors but also decreased the level of TREM2 and inhibited the occurrence of autophagy. In contrast, an increase in the level of TREM2 decreased the expression of inflammatory factors and enhanced the level of autophagy through the p38 MAPK/mTOR pathway. Moreover, increased TREM2 expression significantly decreased the apoptosis of dopaminergic (DA) neurons and improved the motor ability of PD mice. In summary, TREM2 is an important link between the pathogenesis of PD and inflammation. Our study provides a new view for the mechanism of TREM2 in PD and reveals TREM2 as a potential therapeutic target for PD.


2021 ◽  
Vol 7 (26) ◽  
pp. eabg3198
Author(s):  
Zhuang-Yao D. Wei ◽  
Ashok K. Shetty

Parkinson’s disease (PD), the second most prevalent neurodegenerative disorder, is typified by both motor and nonmotor symptoms. The current medications provide symptomatic relief but do not stimulate the production of new dopaminergic neurons in the substantia nigra. Astrocyte reprogramming has recently received much attention as an avenue for increasing functional dopaminergic neurons in the mouse PD brain. By targeting a microRNA (miRNA) loop, astrocytes in the mouse brain could be reprogrammed into functional dopaminergic neurons. Such in vivo astrocyte reprogramming in the mouse model of PD has successfully added new dopaminergic neurons to the substantia nigra and increased dopamine levels associated with axonal projections into the striatum. This review deliberates the astrocyte reprogramming methods using specific transcription factors and mRNAs and the progress in generating dopaminergic neurons in vivo. In addition, the translational potential, challenges, and potential risks of astrocyte reprogramming for an enduring alleviation of parkinsonian symptoms are conferred.


2020 ◽  
Vol 21 (22) ◽  
pp. 8421
Author(s):  
Chrysoula Marogianni ◽  
Maria Sokratous ◽  
Efthimios Dardiotis ◽  
Georgios M. Hadjigeorgiou ◽  
Dimitrios Bogdanos ◽  
...  

Parkinson’s disease (PD) is a neurodegenerative disorder, caused by, so far, unknown pathogenetic mechanisms. There is no doubt that pro-inflammatory immune-mediated mechanisms are pivotal to the pathogenicity and progression of the disease. In this review, we highlight the binary role of microglia activation in the pathophysiology of the disorder, both neuroprotective and neuromodulatory. We present how the expression of several cytokines implicated in dopaminergic neurons (DA) degeneration could be used as biomarkers for PD. Viral infections have been studied and correlated to the disease progression, usually operating as trigger factors for the inflammatory process. The gut–brain axis and the possible contribution of the peripheral bowel inflammation to neuronal death, mainly dopaminergic neurons, seems to be a main contributor of brain neuroinflammation. The role of the immune system has also been analyzed implicating a-synuclein in the activation of innate and adaptive immunity. We also discuss therapeutic approaches concerning PD and neuroinflammation, which have been studied in experimental and in vitro models and data stemming from epidemiological studies.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Huynh Kim Thoa Truong ◽  
Man Anh Huynh ◽  
My Dung Vuu ◽  
Thi Phuong Thao Dang

Parkinson’s disease (PD), which is characterized by the decreased motor function and the loss of dopaminergic neurons, is a common neurodegenerative disorder in elders. There have been numerous in vitro and in vivo models developed to study mechanisms of PD and screen potential drug. Recently, dUCH-knockdown Drosophila model has been established and showed potential for screening antioxidants for PD treatment. The dUCH-knockdown Drosophila model of PD mimics most of main PD pathologies such as dopaminergic neurons degeneration, locomotor dysfunction, and shortage of dopamine in the brain. Common purslane (Portulaca oleracea L.) is a nutritious vegetable containing a variety of antioxidants, levodopa, and dopamine, a neurotransmitter closely related to PD. Purslane has been reported to exert neuroprotective effects against several neurotoxins including rotenone and 6-OHDA in PD models. However, the recent data have not provided sufficient evidence for using purslane to treat PD or decelerate disease progression. Therefore, in this study, we utilized dUCH-knockdown fly to evaluate the capacity of purslane extracts for PD treatment. The results showed that purslane extracts improved locomotor ability in the larval stage and decelerated disease progression in the adult stage. Additionally, purslane extracts also reduced dopaminergic neuron degeneration. Taken together, our data strongly demonstrated that purslane extracts effectively rescued PD-like phenotypes in the fly model. This result contributed a foundation for further study on the application of purslane in PD treatment.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Anna Zinger ◽  
Carlos Barcia ◽  
Maria Trinidad Herrero ◽  
Gilles J. Guillemin

Parkinson’s disease (PD) is a common neurodegenerative disorder characterised by loss of dopaminergic neurons and localized neuroinflammation occurring in the midbrain several years before the actual onset of symptoms. Activated microglia themselves release a large number of inflammatory mediators thus perpetuating neuroinflammation and neurotoxicity. The Kynurenine pathway (KP), the main catabolic pathway for tryptophan, is one of the major regulators of the immune response and may also be implicated in the inflammatory response in parkinsonism. The KP generates several neuroactive compounds and therefore has either a neurotoxic or neuroprotective effect. Several of these molecules produced by microglia can activate the N-methyl-D-aspartate (NMDA) receptor-signalling pathway, leading to an excitotoxic response. Previous studies have shown that NMDA antagonists can ease symptoms and exert a neuroprotective effect in PD bothin vivoandin vitro. There are to date several lines of evidence linking some of the KP intermediates and the neuropathogenesis of PD. Moreover, it is likely that pharmacological modulation of the KP will represent a new therapeutic strategy for PD.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Noelia Granado ◽  
Sara Ares-Santos ◽  
Rosario Moratalla

Parkinson's disease (PD) is a neurodegenerative disorder predominantly affecting the elderly. The aetiology of the disease is not known, but age and environmental factors play an important role. Although more than a dozen gene mutations associated with familial forms of Parkinson's disease have been described, fewer than 10% of all cases can be explained by genetic abnormalities. The molecular basis of Parkinson's disease is the loss of dopamine in the basal ganglia (caudate/putamen) due to the degeneration of dopaminergic neurons in the substantia nigra, which leads to the motor impairment characteristic of the disease. Methamphetamine is the second most widely used illicit drug in the world. In rodents, methamphetamine exposure damages dopaminergic neurons in the substantia nigra, resulting in a significant loss of dopamine in the striatum. Biochemical and neuroimaging studies in human methamphetamine users have shown decreased levels of dopamine and dopamine transporter as well as prominent microglial activation in the striatum and other areas of the brain, changes similar to those observed in PD patients. Consistent with these similarities, recent epidemiological studies have shown that methamphetamine users are almost twice as likely as non-users to develop PD, despite the fact that methamphetamine abuse and PD have distinct symptomatic profiles.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Renrong Wei ◽  
Cuiping Rong ◽  
Qingfeng Xie ◽  
Shouhai Wu ◽  
Yuchao Feng ◽  
...  

Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra (SN)-striatum circuit, which is associated with glial activation and consequent chronic neuroinflammation. Optimized Yinxieling Formula (OYF) is a Chinese medicine that exerts therapeutical effect and antiinflammation property on psoriasis. Our previous study has proven that pretreatment with OYF could regulate glia-mediated inflammation in an acute mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Given that PD is a chronic degeneration disorder, this study applied another PD animal model induced by striatal injection of 6-hydroxydopamine (6-OHDA) to mimic the progressive damage of the SN-striatum dopamine system in rats. The OYF was administrated in the manner of pretreatment plus treatment. The effects of the OYF on motor behaviors were assessed with the apomorphine-induced rotation test and adjusting steps test. To confirm the effect of OYF on dopaminergic neurons and glia activation in this model, we analyzed the expression of tyrosine hydroxylase (TH) and glia markers, ionized calcium-binding adapter molecule 1 (Iba-1), and glial fibrillary acidic protein (GFAP) in the SN region of the rat PD model. Inflammation-associated factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were further evaluated in this model and in interferon-γ- (INF-γ-) induced murine macrophages RAW264.7 cells. The results from the in vivo study showed that OYF reversed the motor behavioral dysfunction in 6-OHDA-induced PD rats, upregulated the TH expression, decreased the immunoreactivity of Iba-1 and GFAP, and downregulated the mRNA levels of TNF-α and COX-2. The OYF also trended to decrease the mRNA levels of IL-1β and iNOS in vivo. The results from the in vitro study showed that OYF significantly decreased the mRNA levels of TNF-α, IL-1β, IL-6, iNOS, and COX-2. Therefore, this study suggests that OYF exerts antiinflammatory effects, which might be related to the protection of dopaminergic neurons in 6-OHDA-induced chronic neurotoxicity.


Sign in / Sign up

Export Citation Format

Share Document