scholarly journals Intestinal Microbiota as Modulators of the Immune System and Neuroimmune System: Impact on the Host Health and Homeostasis

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Carlos Magno da Costa Maranduba ◽  
Sandra Bertelli Ribeiro De Castro ◽  
Gustavo Torres de Souza ◽  
Cristiano Rossato ◽  
Francisco Carlos da Guia ◽  
...  

Many immune-based intestinal disorders, such as ulcerative colitis and Crohn’s disease, as well as other illnesses, may have the intestines as an initial cause or aggravator in the development of diseases, even apparently not correlating directly to the intestine. Diabetes, obesity, multiple sclerosis, depression, and anxiety are examples of other illnesses discussed in the literature. In parallel, importance of the gut microbiota in intestinal homeostasis and immunologic conflict between tolerance towards commensal microorganisms and combat of pathogens is well known. Recent researches show that the immune system, when altered by the gut microbiota, influences the state in which these diseases are presented in the patient directly and indirectly. At the present moment, a considerable number of investigations about this subject have been performed and published. However, due to difficulties on correlating information, several speculations and hypotheses are generated. Thus, the present review aims at bringing together how these interactions work—gut microbiota, immune system, and their influence in the neuroimmune system.

2019 ◽  
Vol 28 (12) ◽  
pp. 1507-1527 ◽  
Author(s):  
Giovanni Schepici ◽  
Serena Silvestro ◽  
Placido Bramanti ◽  
Emanuela Mazzon

Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating, and degenerative disease that affects the central nervous system. A recent study showed that interaction between the immune system and the gut microbiota plays a crucial role in the development of MS. This review reports the clinical studies carried out in recent years that aimed to evaluate the composition of the microbiota in patients with relapsing–remitting MS (RR-MS). We also report what is available in the literature regarding the effectiveness of fecal microbiota transplantation and the role of the diet in restoring the intestinal bacterial population. Studies report that patients with RR-MS have a microbiota that, compared with healthy controls, has higher amounts of Pedobacteria, Flavobacterium, Pseudomonas, Mycoplana, Acinetobacter, Eggerthella, Dorea, Blautia, Streptococcus and Akkermansia. In contrast, MS patients have a microbiota with impoverished microbial populations of Prevotella, Bacteroides, Parabacteroides, Haemophilus, Sutterella, Adlercreutzia, Coprobacillus, Lactobacillus, Clostridium, Anaerostipes and Faecalibacterium. In conclusion, the restoration of the microbial population in patients with RR-MS appears to reduce inflammatory events and the reactivation of the immune system.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Miao Wu ◽  
Jiawei Bai ◽  
Chengtai Ma ◽  
Jie Wei ◽  
Xianjin Du

Tumor immunotherapy is the fourth therapy after surgery, chemotherapy, and radiotherapy. It has made great breakthroughs in the treatment of some epithelial tumors and hematological tumors. However, its adverse reactions are common or even more serious, and the response rate in some solid tumors is not satisfactory. With the maturity of genomics and metabolomics technologies, the effect of intestinal microbiota in tumor development and treatment has gradually been recognized. The microbiota may affect tumor immunity by regulating the host immune system and tumor microenvironment. Some bacteria help fight tumors by activating immunity, while some bacteria mediate immunosuppression to help cancer cells escape from the immune system. More and more studies have revealed that the effects and complications of tumor immunotherapy are related to the composition of the gut microbiota. The composition of the intestinal microbiota that is sensitive to treatment or prone to adverse reactions has certain characteristics. These characteristics may be used as biomarkers to predict the prognosis of immunotherapy and may also be developed as “immune potentiators” to assist immunotherapy. Some clinical and preclinical studies have proved that microbial intervention, including microbial transplantation, can improve the sensitivity of immunotherapy or reduce adverse reactions to a certain extent. With the development of gene editing technology and nanotechnology, the design and development of engineered bacteria that contribute to immunotherapy has become a new research hotspot. Based on the relationship between the intestinal microbiota and immunotherapy, the correct mining of microbial information and the development of reasonable and feasible microbial intervention methods are expected to optimize tumor immunotherapy to a large extent and bring new breakthroughs in tumor treatment.


Author(s):  
Lilija Orlenkovich

The analysis of the variation in the number, intensity and direction of correlations between the immune system and the gut microbiota of rats revealed that the T-, B-system and humoral immunity changes as well as cellular and humoral factors of an organism nonspecific defense are accompanied by changes of the Intestinal microbiota of intact and experimental rats


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Caroline Marcantonio Ferreira ◽  
Angélica Thomaz Vieira ◽  
Marco Aurelio Ramirez Vinolo ◽  
Fernando A. Oliveira ◽  
Rui Curi ◽  
...  

The commensal microbiota is in constant interaction with the immune system, teaching immune cells to respond to antigens. Studies in mice have demonstrated that manipulation of the intestinal microbiota alters host immune cell homeostasis. Additionally, metagenomic-sequencing analysis has revealed alterations in intestinal microbiota in patients suffering from inflammatory bowel disease, asthma, and obesity. Perturbations in the microbiota composition result in a deficient immune response and impaired tolerance to commensal microorganisms. Due to altered microbiota composition which is associated to some inflammatory diseases, several strategies, such as the administration of probiotics, diet, and antibiotic usage, have been utilized to prevent or ameliorate chronic inflammatory diseases. The purpose of this review is to present and discuss recent evidence showing that the gut microbiota controls immune system function and onset, development, and resolution of some common inflammatory diseases.


2021 ◽  
Vol 79 (4) ◽  
pp. 309-314
Author(s):  
Francisca Morgado ◽  
Rui Oliveira Soares

In recent years, several studies have demonstrated the involvement of the intestinal microbiota in immune-mediated diseases such as diabetes, ulcerative colitis, and multiple sclerosis. There are few data on the follicular microbiome and its role in the pathogenesis of scalp diseases. Some studies show influence of dysbiosis on these diseases, and manipulation of the microbiome may represent a possible therapeu- tic option. This article reviews current knowledge regarding the impact of dysbiosis on dermatological diseases of the scalp, such as seborrheic dermatitis, psoriasis, alopecia areata, androgenetic alopecia, lichen planus pilaris, frontal fibrosing alopecia and decalvant folliculitis. A broader understanding of this may suggest additional treatments beyond conventional therapies.


2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S010-S011
Author(s):  
E Brand ◽  
Y Laenen ◽  
F van Wijk ◽  
M de Zoete ◽  
B Oldenburg

Abstract Background The pathogenesis of inflammatory bowel disease (IBD) is thought to result from an interplay between microbiota, the immune system and the environment in genetically susceptible hosts. Immunoglobulin A (IgA) produced by the immune system can be specifically directed against bacteria. The IgA-coating pattern of intestinal bacteria thus reflects interactions between the immune system and specific bacteria. Studying IBD in twins, concordant and discordant for IBD, reduces the impact of genetic predisposition and childhood exposures and therefore offers the unique opportunity to focus on other factors such as intestinal microbiota composition and immune-interactions in IBD. Methods Faecal samples from twin pairs discordant for Crohn’s disease (CD) or ulcerative colitis (UC) were collected. Employing fluorescence-activated cell sorting, IgA+ and IgA− bacteria from the intestinal microbiota were sorted. Subsequently, (1) the total, (2) IgA+ and (3) IgA− microbial composition was determined by 16S rRNA sequencing (IgA-SEQ). We estimated the relative IgA coating per bacterial species by dividing the abundance of that species in the IgA+ fraction over the abundance in the IgA- fraction, representing the IgA coating index. Linear discriminant analyses were performed with LefSE. Results We included 31 twin pairs (62 individuals) discordant for IBD (CD: 15, UC: 16). 15/32 twin pairs were monozygotic, 43/62 of participants were female, the median age was 47 years (interquartile range: 34–58.5). Of 31 participants with IBD, 7 had signs of active inflammation based on endoscopy, Harvey–Bradshaw index or short clinical colitis activity index. Differences (log-linear discriminant analysis score >3) in the microbial composition of IgA-coated bacteria were observed between CD patients and their twin-siblings not affected by IBD: Dorea formicigenerans (increased in IgA coating), Parabacteroides sp., Christensenellaceae sp., Clostridium sp. and Mollicutes RF39 sp. (decreased in IgA coating). In ulcerative colitis patients, an increase in IgA-coating was observed for Ruminococcus gnavus and Dorea formicigenerans, while Turicibacter sp., Barnesiellaceae sp. and an unclassified Clostridiales sp. were decreased in IgA-coating compared with their twin-siblings not affected by IBD. Conclusion In twins affected by IBD, the pattern of IgA-coated bacteria differs between IBD and non-IBD affected individuals. These data on immune-bacteria interactions could serve as a starting point for the elucidation of the immune-responses triggered by specific bacteria in IBD.


2020 ◽  
Vol 21 (22) ◽  
pp. 8443
Author(s):  
Jayoon Moon ◽  
Chang Ho Yoon ◽  
Se Hyun Choi ◽  
Mee Kum Kim

Using metagenomics, continuing evidence has elicited how intestinal microbiota trigger distant autoimmunity. Sjögren’s syndrome (SS) is an autoimmune disease that affects the ocular surface, with frequently unmet therapeutic needs requiring new interventions for dry eye management. Current studies also suggest the possible relation of autoimmune dry eye with gut microbiota. Herein, we review the current knowledge of how the gut microbiota interact with the immune system in homeostasis as well as its influence on rheumatic and ocular autoimmune diseases, and compare their characteristics with SS. Both rodent and human studies regarding gut microbiota in SS and environmental dry eye are explored, and the effects of prebiotics and probiotics on dry eye are discussed. Recent clinical studies have commonly observed a correlation between gut dysbiosis and clinical manifestations of SS, while environmental dry eye portrays characteristics in between normal and autoimmune. Moreover, a decrease in both the Firmicutes/Bacteroidetes ratio and genus Faecalibacterium have most commonly been observed in SS subjects. The presumable pathways forming the “gut dysbiosis–ocular surface–lacrimal gland axis” are introduced. This review may provide perspectives into the link between the gut microbiome and dry eye, enhance our understanding of the pathogenesis in autoimmune dry eye, and be useful in the development of future interventions.


2012 ◽  
Vol 95 (1) ◽  
pp. 35-49 ◽  
Author(s):  
Julia M Green-Johnson

Abstract The integral nature of interactions between the gut microbiota and host is especially evident with respect to effects on the immune system and host defenses. Host-microbiota interactions are increasingly being revealed as complex and dynamic, with far-reaching effects on varied aspects of host health. This review focuses on adaptive and innate immune responses to the gut microbiota and the bidirectional nature of these host-microbe interactions.


Gut Microbes ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiaomin Yuan ◽  
Biqing Chen ◽  
Zhenglan Duan ◽  
Ziqian Xia ◽  
Yang Ding ◽  
...  

Author(s):  
Beata Zwiernik ◽  
Tomasz Arłukowicz ◽  
Marcin Mycko ◽  
Jacek Zwiernik

Introduction: Multiple sclerosis (MS) is caused by the abnormal activity of the immune system. It is believed that the pathological immune response may be initiated in the intestines, the area of the largest antigen presentation. This is where autoreactive T and B cells are activated, which constitutes the pathomechanism of this disease. In a healthy organism, normal gut microbiota mediates the balance between pro- and anti-inflammatory activity of the immune system. Aim: This paper aims at describing the healthy gut microbiota, its changes in MS patients, factors that influence its composition and therapeutic corrective possibilities. Material and methods: The paper is based on available medical literature. Results and discussion: It has been evidenced that in MS patients the gut microbiota is dominated by pro-inflammatory species. This may be caused by environmental factors, for instance, the diet, antibiotics or stimulants. Methods of the microbiota correction involve dietary change, prebiotics and probiotics as well as fecal microbiota transplantation (FMT). FMT is a particularly safe and promising method that has proven its efficiency on an animal model of MS. Conclusions: Experimental research has revealed that the correction of the gut microbiota may lead to MS remission or alleviation. FMT utilized in inflammatory bowel disease seems to be presently the most comprehensive intervention. Since only incidental reports of its efficiency in humans are presently available, further clinical studies are necessary.


Sign in / Sign up

Export Citation Format

Share Document