scholarly journals A Novel Hysteresis Model of Magnetic Field Strength Determined by Magnetic Induction Intensity for Fe-3% Si Electrical Steel Applied in Cigarette Making Machines

2016 ◽  
Vol 2016 ◽  
pp. 1-5
Author(s):  
Hao Wang ◽  
Jianbo Zhan ◽  
Zhenhua Yu ◽  
Ying Zhang ◽  
Jiang Yu ◽  
...  

Hysteresis characteristics of grain-oriented electrical steel were studied through the hysteresis loop. Existing hysteresis fitting simulation methods were summarized, and new Fe-3% Si grain-oriented electrical steel hysteresis loop model was proposed. Undetermined coefficients of the magnetic field intensity and magnetic flux density were determined by both the fixed angle method and the least squares method, and the hysteresis loop model was validated with high fitting degree by experimental data.

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4110
Author(s):  
Witold Mazgaj ◽  
Michal Sierzega ◽  
Zbigniew Szular

This paper describes a simple method of approximating hysteresis changes in electrical steel sheets. This method is based on assumptions that flux density or field strength changes are a sum or a difference of functions that describe one curve of the limiting hysteresis loop and a certain ‘transient’ component. Appropriate formulas that present the flux density as functions of the field strength and those that present inverse dependencies are proposed. An application of this approximation requires knowledge of the measured limiting hysteresis loop and a few minor loops. Algorithms for determining changes in the flux density or field strength are proposed and discussed. The correctness of the proposed approximation of hysteresis changes was verified through a comparison of measured hysteresis loops with the loops calculated for several different excitations of the magnetic field occurring in dynamo and transformer steel sheets. Additionally, an example of the application of the proposed approximation of hysteresis changes is discussed in the paper. The proposed approximation of hysteresis changes is recommended for numerical calculations of the magnetic field distribution in dynamo and transformer steel sheets.


2013 ◽  
Vol 275-277 ◽  
pp. 771-777
Author(s):  
Yue Kun Zheng ◽  
Yi Jian Huang

A shear magnetic rheometer with a dual MRF shear region has been designed. The effect of magnetic rheometer gap MRF magneto-rheological on the torque measurement has been took full account, so the measurement accuracy improved. The design process using the Equivalent Magnetic Circuit Method to calculate the reluctance of each local area of magnetic rheometer, and use magnetic potential equation calculate the number of coils required for magnetic rheometer. Finally, used ANSYS software simulation analysis of the magnetic field of the magnetic rheometer, proposed fractional differential equations to describe the relationship between the MRF shear stress, shear rate and time, and using nonlinear least-squares method to fit the coefficients of fractional differential equations. The results show that the magnetic field of the two MRF regions is evenly distributed and the difference in the magnetic flux density of the two MRF regions within the ideal range; Coefficients and orders of fractional differential equations affected by the magneto-rheological fluid nature and speed.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.


2021 ◽  
Vol 11 (10) ◽  
pp. 4567
Author(s):  
Xiaoqing Zhang ◽  
Yaowu Wang

An effective method is proposed in this paper for calculating the transient magnetic field and induced voltage in the photovoltaic bracket system under lightning stroke. Considering the need for the lightning current responses on various branches of the photovoltaic bracket system, a brief outline is given to the equivalent circuit model of the photovoltaic bracket system. The analytic formulas of the transient magnetic field are derived from the vector potential for the tilted, vertical and horizontal branches in the photovoltaic bracket system. With a time–space discretization scheme put forward for theses formulas, the magnetic field distribution in an assigned spatial domain is determined on the basis of the lightning current responses. The magnetic linkage passing through a conductor loop is evaluated by the surface integral of the magnetic flux density and the induced voltage is obtained from the time derivative of the magnetic linkage. In order to check the validity of the proposed method, an experiment is made on a reduced-scale photovoltaic bracket system. Then, the proposed method is applied to an actual photovoltaic bracket system. The calculations are performed for the magnetic field distributions and induced voltages under positive and negative lightning strokes.


Author(s):  
Sheng Bao ◽  
Shengnan Hu ◽  
Yibin Gu

The objective of this research is to explore the correlation between the piezomagnetic response and ratcheting failure behavior under asymmetrical cyclic stressing in X80 pipeline steel. The magnetic field variations from cycle to cycle were recorded simultaneously during the whole-life ratcheting test. Analysis made in the present work shows that the piezomagnetic hysteresis loop evolves systematically with the number of cycles in terms of its shape and position. Corresponding to the three-stage process in the mechanical response, piezomagnetic response can also be divided into three principal stages, but the evolution of magnetic parameter is more complex. Furthermore, the loading branch and unloading branch of the magnetic field-stress hysteresis loop separate gradually from each other during ratcheting failure process, leading to the shape of hysteresis loop changes completely. Therefore, the progressive degradation of the steel under ratcheting can be tracked by following the evolution of the piezomagnetic field. And the shape transition of the hysteresis loop can be regarded as an early warning of the ratcheting failure.


2020 ◽  
Vol 22 (1-2) ◽  
pp. 58-64
Author(s):  
Teodora Gavrilov ◽  
◽  
Karolina Kasaš-Lažetić ◽  
Kristian Haška ◽  
Miroslav Prša

In this paper, the analysis of magnetic field distribution of overhead mixed power line (20 kV/0.4 kV) supported by reinforced concrete towers, named MNL-12 is presented. The impact of ferromagnetic, conductive parts of the pylons (reinforcing bars, billets and cross arm beams) on magnetic field distribution is investigated. The numerical calculations were performed in COMSOL Multiphysics program package on simplified 2D model. The main goal of the calculations was to examine the impact of currents induced in ferromagnetic conductive parts on magnetic field produced by currents in the power system’s conductors. The calculation results are presented graphically, as the diagrams of the magnetic flux density magnitude distribution in the tower plan, normal to the system’s axe. The calculation results demonstrated that the magnetic field of induced currents decreases the magnetic field produced by the currents of overhead power system.


2021 ◽  
Vol 1018 ◽  
pp. 111-116
Author(s):  
Yan Hua Zou ◽  
Hui Jun Xie

The traditional magnetic abrasive finishing (MAF) process, the magnetic flux density at the bottom of the magnetic pole is unevenly distributed, resulting in poor uniformity of the finished surface. Therefore, it is proposed to improve the surface quality by attaching a magnetic plate at the bottom of the workpiece to improve the magnetic field distribution. It is confirmed by simulation that the magnetic field distribution at the bottom of the magnetic pole is effectively improved after the magnetic plate is attached. It is proved through experiments that the magnetic plate-assisted MAF process can obtain a smoother surface. The experimental results show that the surface roughness of the glass lens improves from 246 nm Ra to 3 nm Ra through the magnetic plate-assisted MAF process within 45min.


Author(s):  
Ping-Hsun Lee ◽  
Jen-Yuan (James) Chang

Abstract In this paper we proposed a platform for measuring shear force of magnetorheological (MR) fluid by which the relationship of yield stress and magnetic flux density of specific material can be determined. The device consisted of a rotatable center tube in a frame body and the magnetic field was provided by two blocks of permanent magnets placed oppositely outside the frame body. The magnitude and direction of the magnetic field were manipulated by changing the distance of the two permanent magnets from the frame body and rotating the center tube, respectively. For determining the magnetic field of the device, we adopted an effective method by fitting the FEM (finite element method) result to the measured one and then rebuilt the absent components to approximate the magnetic field, which was hardly to be measured simultaneously as different device setup were required. With the proposed platform and analytical methods, the drawing shear force and the corresponding yield stress contributed by MR fluid could be evaluated in respect to the magnitude and direction of given magnetic flux density with acceptable accuracy for specific designing purposes without a large, complex, and expensive instrument.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1620
Author(s):  
Zhuang Li ◽  
Lintao Zhang ◽  
Yanming Bao ◽  
Danzhu Ma

The brake effect of the freestanding adjustable combination electromagnetic brake (FAC-EMBr) and EMBr ruler on the behavior of molten steel flow and the level fluctuation were investigated with the numerical method. The effects of the horizontal magnetic pole position (EMBr ruler), magnetic induction intensity, and casting speed on two types of electromagnetic brakes were studied. The numerical simulation results show that the magnetic field caused by the EMBr ruler is mainly distributed under the submerged entry nozzle (SEN), and it is very weak nearby the meniscus area. After the FAC-EMBr is applied, the magnetic field is mainly distributed in the area below the submerged entry nozzle, the upper roll region, and in the meniscus region. The application of the electromagnetic brake can effectively suppress the impact of the jet and decrease the molten steel velocity in the meniscus area. The brake effect of the EMBr ruler on the behavior of the molten steel flow and the level fluctuation is significantly influenced by the horizontal magnetic pole position. The increasing of the magnetic flux density can significantly increase the velocity of molten steel in the upper roll region and lead to an intense fluctuation in the steel/slag interface, as the horizontal magnetic field cannot cover the three key regions. The brake effect of the FAC-EMBr is less influenced by the variation of the process parameters due to the addition of vertical magnetic poles. Additionally, the “secondary braking effect” of the vertical magnetic poles can help to lower the increase of velocity in the upper roll region caused by the excessive magnetic induction intensity and the high casting speed. Therefore, even under the high casting speed conditions, the application of a new type of FAC-EMBr is also an efficient way to suppress the molten steel flow and level fluctuation at the meniscus area and decrease the possibility of slag entrapment.


2011 ◽  
Vol 121-126 ◽  
pp. 2706-2709
Author(s):  
Dan Jiang ◽  
Ping Yang ◽  
Kun Jiang

As a type of solid state switch, MR (magnetoresistive) sensor detects the air cylinder piston’s position in pneumatic control system. The construction and working principle of the air cylinder with MR sensor are introduced. Using 2-D magnetic field finite element analysis (FEA) method, the magnetic field distribution of air cylinder with piston motion is analyzed. Simulation results are given. The magnetic flux density characteristics are compared between piston wear or not.


Sign in / Sign up

Export Citation Format

Share Document