scholarly journals Paeoniflorin Attenuated Oxidative Stress in Rat COPD Model Induced by Cigarette Smoke

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jinpei Lin ◽  
Fei Xu ◽  
Genfa Wang ◽  
Lingwen Kong ◽  
Qingli Luo ◽  
...  

Paeoniflorin (PF), a monoterpene glucoside, might have an effect on the oxidative stress. However, the mechanism is still unknown. In this study, we made the COPD model in Sprague-Dawley (SD) rats by exposing them to the smoke of 20 cigarettes for 1 hour/day and 6 days/week, for 12 weeks, 24 weeks, or 36 weeks. Our findings suggested that smoke inhalation can trigger the oxidative stress from the very beginning. A 24-week treatment of PF especially in the dosage of 40 mg/kg·d can attenuate oxygen stress by partially quenching reactive oxygen species (ROS) and upregulating antioxidant enzymes via an Nrf2-dependent mechanism.

Author(s):  
Sidra Munir

When the antioxidants in our immune system cannot neutralize or convert Reactive oxygen species into safe molecules at the rate at which it is produced then this imbalance is termed as “oxidative stress”. It is related with a wide array of diseases that includes cancer, diabetes, cardiovascular diseases, hypertension etc. These ROS species however are utmost essential for the proper functioning of human body which are produced as a consequence of partial oxidation of cellular metabolism performing essential functions such as protein phosphorylation, activation of several transcriptional factors, apoptosis, immunity, and differentiation. The sources by which these are produced can be broadly classified are intrinsic and extrinsic sources. There are variety of natural antioxidant enzymes of human body that combat against this oxidative stress. The extrinsic sources of ROS include the use of natural plants, extracted flavonoids and vitamins. In this review we will briefly explain how the sources of ROS, its essential function in human body, its elevation and associated damage to organs and effect on various diseases, and a hope of finding a way of how this oxidative stress can be exploited for therapeutic potential.


Author(s):  
Marta Goschorska ◽  
Izabela Gutowska ◽  
Irena Baranowska-Bosiacka ◽  
Katarzyna Piotrowska ◽  
Emilia Metryka ◽  
...  

It has been reported that donepezil and rivastigmine, the acetylcholinesterase (AchE) inhibitors commonly used in the treatment of Alzheimer’s disease (AD), do not only inhibit AChE but also have antioxidant properties. As oxidative stress is involved in AD pathogenesis, in our study we attempted to examine the influence of donepezil and rivastigmine on the activity of antioxidant enzymes and glutathione concentration in macrophages—an important source of reactive oxygen species and crucial for oxidative stress progression. The macrophages were exposed to sodium fluoride induced oxidative stress. The antioxidant enzymes activity and concentration of glutathione were measured spectrophotometrically. The generation of reactive oxygen species was visualized by confocal microscopy. The results of our study showed that donepezil and rivastigmine had a stimulating effect on catalase activity. However, when exposed to fluoride-induced oxidative stress, the drugs reduced the activity of some antioxidant enzymes (Cat, SOD, GR). These observations suggest that the fluoride-induced oxidative stress may suppress the antioxidant action of AChE inhibitors. Our results may have significance in the clinical practice of treatment of AD and other dementia diseases.


2012 ◽  
Vol 4 (2) ◽  
pp. 271-276 ◽  
Author(s):  
S Mukhopadhyay ◽  
J Dutta ◽  
R Raut ◽  
H Datta ◽  
A K Bhattacharyay

Objective: To compare oxidative stress between primary retinoblastoma and retinoblastoma with distant metastasis. Patients and methods: Forty consecutive patients presented with primary retinoblastoma and the same number of patients presented with distant metastasis, attending the outpatient department of our hospital between August 2002 and April 2005. All the patients with retinoblastoma underwent a standard metastasis workup and were subsequently categorized into two groups (without metastasis and with metastasis).Venous blood samples were drawn from each patient. After proper centrifugation, serum was collected and antioxidant enzymes and reactive oxygen species (ROS) were assayed. Main outcome measures: Serum collected from the patients was subjected to biochemical assay of the antioxidant enzymes (superoxide dismutase, catalase and peroxidise) and ROS to determine any difference in enzyme activity between the two groups. Results: Antioxidant levels were found to be less in the metastasis group as compared to the primary intraocular retinoblastoma group(p<0.05).Mean ROS activity was found to be increased in metastatic group (p<0.05). Conclusion: The decreased antioxidant enzymes level along with increased ROS activity in patients with metastatic retinoblastoma reflect increased oxidative stress as compared to primary intraocular retinoblastoma patients.DOI: http://dx.doi.org/10.3126/nepjoph.v4i2.6543 Nepal J Ophthalmol 2012; 4 (2): 271-276  


2012 ◽  
Vol 25 (6) ◽  
pp. 551-560 ◽  
Author(s):  
Kaïs H. Al-Gubory ◽  
Catherine Garrel ◽  
Patrice Faure ◽  
Norihiro Sugino

1997 ◽  
Vol 8 (11) ◽  
pp. 1722-1731 ◽  
Author(s):  
W Gwinner ◽  
U Landmesser ◽  
R P Brandes ◽  
B Kubat ◽  
J Plasger ◽  
...  

Results from several radical scavenger studies indirectly suggested an involvement of reactive oxygen species in the pathogenesis of puromycin aminonucleoside glomerulopathy. In this study, generation of reactive oxygen species was examined directly in glomeruli isolated from rats in the acute phase of puromycin aminonucleoside nephrosis and related to the changes in the glomerular antioxidant defense. Five and nine days after puromycin aminonucleoside injection, gross proteinuria, reduced creatinine clearances, and typical changes of glomerular morphology were present. Levels of reactive oxygen species were increased eightfold in glomeruli isolated 15 min after puromycin aminonucleoside injection, returned to baseline levels on days 1 and 5 after injection, and rose again to 14-fold on day 9 after injection, as determined by chemiluminescence with luminol. Further analysis of increased glomerular radical generation, using the chemiluminescence enhancer lucigenin and different radical scavengers, suggested a predominant involvement of hydroxyl radical and hydrogen peroxide in the initial increase in reactive oxygen species 15 min after puromycin aminonucleoside. Nine days after induction of nephrosis, primarily superoxide anion and hydroxyl radical were found to contribute to increased reactive oxygen species. Despite oxidative stress, antioxidant enzymes were not induced in the course of nephrosis. On the contrary, catalase and glutathione peroxidase activities declined 9 d after puromycin aminonucleoside injection. The results indicate that a transient increase in glomerular reactive oxygen species is sufficient to induce the oxidative glomerular injury observed in this model and that the glomerulus may not necessarily respond to oxidative stress with an induction of antioxidant enzymes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joanne S. Boden ◽  
Kurt O. Konhauser ◽  
Leslie J. Robbins ◽  
Patricia Sánchez-Baracaldo

AbstractThe ancestors of cyanobacteria generated Earth’s first biogenic molecular oxygen, but how they dealt with oxidative stress remains unconstrained. Here we investigate when superoxide dismutase enzymes (SODs) capable of removing superoxide free radicals evolved and estimate when Cyanobacteria originated. Our Bayesian molecular clocks, calibrated with microfossils, predict that stem Cyanobacteria arose 3300–3600 million years ago. Shortly afterwards, we find phylogenetic evidence that ancestral cyanobacteria used SODs with copper and zinc cofactors (CuZnSOD) during the Archaean. By the Paleoproterozoic, they became genetically capable of using iron, nickel, and manganese as cofactors (FeSOD, NiSOD, and MnSOD respectively). The evolution of NiSOD is particularly intriguing because it corresponds with cyanobacteria’s invasion of the open ocean. Our analyses of metalloenzymes dealing with reactive oxygen species (ROS) now demonstrate that marine geochemical records alone may not predict patterns of metal usage by phototrophs from freshwater and terrestrial habitats.


Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 564 ◽  
Author(s):  
Jui-Chih Chang ◽  
Chih-Feng Lien ◽  
Wen-Sen Lee ◽  
Huai-Ren Chang ◽  
Yu-Cheng Hsu ◽  
...  

It has been documented that reactive oxygen species (ROS) contribute to oxidative stress, leading to diseases such as ischemic heart disease. Recently, increasing evidence has indicated that short-term intermittent hypoxia (IH), similar to ischemia preconditioning, could yield cardioprotection. However, the underlying mechanism for the IH-induced cardioprotective effect remains unclear. The aim of this study was to determine whether IH exposure can enhance antioxidant capacity, which contributes to cardioprotection against oxidative stress and ischemia/reperfusion (I/R) injury in cardiomyocytes. Primary rat neonatal cardiomyocytes were cultured in IH condition with an oscillating O2 concentration between 20% and 5% every 30 min. An MTT assay was conducted to examine the cell viability. Annexin V-FITC and SYTOX green fluorescent intensity and caspase 3 activity were detected to analyze the cell death. Fluorescent images for DCFDA, Fura-2, Rhod-2, and TMRM were acquired to analyze the ROS, cytosol Ca2+, mitochondrial Ca2+, and mitochondrial membrane potential, respectively. RT-PCR, immunocytofluorescence staining, and antioxidant activity assay were conducted to detect the expression of antioxidant enzymes. Our results show that IH induced slight increases of O2−· and protected cardiomyocytes against H2O2- and I/R-induced cell death. Moreover, H2O2-induced Ca2+ imbalance and mitochondrial membrane depolarization were attenuated by IH, which also reduced the I/R-induced Ca2+ overload. Furthermore, treatment with IH increased the expression of Cu/Zn SOD and Mn SOD, the total antioxidant capacity, and the activity of catalase. Blockade of the IH-increased ROS production abolished the protective effects of IH on the Ca2+ homeostasis and antioxidant defense capacity. Taken together, our findings suggest that IH protected the cardiomyocytes against H2O2- and I/R-induced oxidative stress and cell death through maintaining Ca2+ homeostasis as well as the mitochondrial membrane potential, and upregulation of antioxidant enzymes.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 347-347
Author(s):  
Maureen Meister ◽  
Rami Najjar ◽  
Jessica Danh ◽  
Lena MT Lear ◽  
Justina Kim ◽  
...  

Abstract Objectives To determine whether a diet supplemented with red raspberry (RB) is effective at reducing angiotensin (Ang) II-induced oxidative stress in the lungs of Sprague Dawley (SD) rats. Methods Eight-week-old male SD rats were fed an AIN-93M diet alone (control and Ang II) or supplemented with 10% w/w freeze-dried RB powder for a total of seven weeks. At week 4, SD rats were implanted with subcutaneous osmotic minipumps for delivery of 0.9% saline (control) or Ang II (270 ng/kg body weight/day). Following 3 weeks of infusion, rats were sacrificed, and lungs were collected for analysis. Protein expression of the pro-oxidant enzyme, NADPH oxidase (NOX) 4, and antioxidant enzymes superoxide dismutase 1 (SOD1), catalase, heme oxygenase-1 (HO-1), and NADPH quinone dehydrogenase 1 (NQO1) were assessed by western blot. Results were analyzed by one-way ANOVA followed by Tukey post-hoc test. Results were normalized to control and presented as means ± standard deviation. Results RB supplementation significantly increased the expression of antioxidant enzymes, including, SOD1 (1.34 ± 0.16, n = 5, vs 1.11 ± 0.13-fold, n = 5, P = 0.04) and catalase (1.50 ± 0.28, n = 5, vs 0.79 ± 0.20-fold, n = 5, P = 0.008), when compared to Ang II alone. Compared to control, however, RB significantly increased SOD1 (1.00 ± 0.05-fold, n = 4, P = 0.004) while catalase did not (1.00 ± 0.40, n = 4, P = 0.07). Similarly, HO-1 (1.66 ± 0.82, n = 5, vs 0.75 ± 0.13-fold, n = 4, P = 0.046) and NQO1 (2.13 ± 0.19, n = 4, vs 1.26 ± 0.14-fold, n = 5, P &lt; 0.0001) were greater in the RB supplemented rats in comparison to Ang II alone. Additionally, RB significantly increased NQO1 (1.00 ± 0.16, n = 4, P &lt; 0.0001) but not HO-1 (1.00 ± 0.43-fold, n = 4, P = 0.22) when compared to control. RB supplementation also decreased the expression of NOX4 (0.77 ± 0.38, n = 5, vs 1.41 ± 0.30-fold, n = 5, P = 0.02) in comparison to Ang II alone. Conclusions Our results suggest the potential for red raspberries to decrease oxidative stress within the lung tissue. As investigations into whole food dietary treatments in lung conditions are essentially non-existent, future work will aim to determine the potential for raspberries to serve as a complementary therapy in these conditions. Funding Sources This work was funded by the Agriculture and Food Research Initiative (grant no. 2019–67,017-29,257/project accession no. 1,018,642) from the USDA National Institute of Food and Agriculture.


2016 ◽  
Vol 44 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Udson Oliveira BARROS JUNIOR ◽  
Michael Douglas Roque LIMA ◽  
Maria Antonia Machado BARBOSA ◽  
Bruno Lemos BATISTA ◽  
Allan Klynger da Silva LOBATO

In response to oxidative damage resulting from overproduction of reactive oxygen species, plants have developed complex and efficient antioxidant machinery. The aims of this research were to measure composts used as stress indicators, quantifying non-enzymatic compounds and activities of antioxidant enzymes, and to explain probable differences between two species of the gender Eucalyptus exposed to low and high aluminium. The experiment employed a factorial that was entirely randomised, with two species (Eucalyptus platyphylla and E. grandis) combined with aluminium concentrations (and 0.08 and 1.60 mM Al, which are described as low and high Al, respectively). This study revealed that the E. platyphylla presented intense modifications on malondialdehyde and electrolyte leakage in leaf and root, being also detected increases to oxidized glutathione, reduced glutathione and total glutathione. In addition, E. platyphylla had strong accumulations linked to superoxide and hydrogen peroxide, while E. grandis were detected minor alterations to both tissues. In relation to superoxide dismutase, catalase, ascorbate peroxidase and peroxidase were showed similar behaviours, with higher activities in E. grandis, if compared to E. platyphylla. Therefore, is possible to conclude that E. grandis is more tolerant to aluminium due to minor production of reactive oxygen species and decreased alterations on stress indicators. Concomitantly, the antioxidant enzymes effectively contribute to reduce the oxidative stress generated in root and leaf of E. grandis exposed to high aluminium.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Md Obaidul Islam ◽  
Tiziana Bacchetti ◽  
Gianna Ferretti

Bladder cancer (BC) is one of the most common tumors found in the urinary bladder for both male and female in western countries. In vitro and in vivo studies suggest that high levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and oxidative stress play a crucial role in human cancer. Low concentration of ROS and RNS is indispensable for cell survival and proliferation. However, high concentration of ROS and RNS can exert a cytotoxic effect. Increased oxidative stress is a result of either increased ROS/RNS production or a decrease of antioxidant defense mechanisms. A literature search was carried out on PubMed, Medline, and Google Scholar for articles in English published up to May 2018 using the following keywords: oxidative stress, antioxidants, reactive oxygen species, lipid peroxidation, paraoxonase, urinary bladder cancer, and nitric oxide. Literature data demonstrate that BC is associated with oxidative stress and with an imbalance between oxidants and antioxidant enzymes. Markers of lipid peroxidation, protein and nucleic acid oxidation are significantly higher in tissues of patients with BC compared with control groups. A decrease of activity of antioxidant enzymes (superoxide dismutase, catalase, glutathione, and paraoxonase) has also been demonstrated. The imbalance between oxidants and antioxidants could have a potential role in the etiology and progression of bladder cancer.


Sign in / Sign up

Export Citation Format

Share Document