scholarly journals New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review

2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Yvoni Kirmanidou ◽  
Margarita Sidira ◽  
Maria-Eleni Drosou ◽  
Vincent Bennani ◽  
Athina Bakopoulou ◽  
...  

Titanium implants are widely used in the orthopedic and dentistry fields for many decades, for joint arthroplasties, spinal and maxillofacial reconstructions, and dental prostheses. However, despite the quite satisfactory survival rates failures still exist. New Ti-alloys and surface treatments have been developed, in an attempt to overcome those failures. This review provides information about new Ti-alloys that provide better mechanical properties to the implants, such as superelasticity, mechanical strength, and corrosion resistance. Furthermore, in vitro and in vivo studies, which investigate the biocompatibility and cytotoxicity of these new biomaterials, are introduced. In addition, data regarding the bioactivity of new surface treatments and surface topographies on Ti-implants is provided. The aim of this paper is to discuss the current trends, advantages, and disadvantages of new titanium-based biomaterials, fabricated to enhance the quality of life of many patients around the world.

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2693
Author(s):  
Anna Lis-Bartos ◽  
Dariusz Szarek ◽  
Małgorzata Krok-Borkowicz ◽  
Krzysztof Marycz ◽  
Włodzimierz Jarmundowicz ◽  
...  

Highly porous, elastic, and degradable polyurethane and polyurethane/polylactide (PU/PLDL) sponges, in various shapes and sizes, with open interconnected pores, and porosity up to 90% have been manufactured. They have been intended for gap filling in the injured spinal cord. The porosity of the sponges depended on the content of polylactide, i.e., it decreased with the increase of polylactide content. The rise of polylactide content caused an increase of Young modulus and rigidity as well as a more complex morphology of the polyurethane/polylactide blends. The mechanical properties, in vitro toxicity, and degradation in artificial cerebrospinal fluid were tested. Sponges underwent continuous degradation with varying degradation rates depending on the polymer composition. In vitro cell studies with fibroblast cultures proved the biocompatibility of the polymers. Based on the obtained results, the designed PU/PLDL sponges appeared to be promising candidates for bridging gaps within injured spinal cord in further in vitro and in vivo studies.


2006 ◽  
Vol 975 ◽  
Author(s):  
Andrei Stanishevsky ◽  
Shafiul Chowdhury ◽  
Nathaniel Greenstein ◽  
Helene Yockell-Lelievre ◽  
Jari Koskinen

ABSTRACTThe hydroxyapatite (HA) based bioceramic materials are usually prepared at high sintering temperatures to attain suitable mechanical properties. The sintering process usually results in a material which is compositionally and morphologically different from nonstoichiometric nano-crystalline HA phase of hard tissue. At the same time, HA particulates used as precursors in ceramic manufacturing are often very similar to the natural HA nanocrystals. It has been shown that synthetic nanoparticle HA (nanoHA) based materials improve the biological response in vitro and in vivo, but the information on mechanical properties of these materials is scarce.In this work we studied the HA nanoparticle (10 – 80 nm mean size) coatings with 30 – 70% porosity prepared by a dip-coating technique on Ti and TiN substrates. It has been found that the mechanical properties of HA nanoparticle coatings are strongly influenced by the initial size, morphology, and surface treatment of nanoparticles. The nanoindentation Young's modulus and hardness of as–deposited nanoHA coatings were in the range of 2.5 – 6.9 GPa and 80 – 230 MPa, respectively. The coatings were stable after annealing up to at least 600 °C, reaching the Young's modulus up to 23 GPa and hardness up to 540 MPa, as well as in simulated body fluids.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1882-1882 ◽  
Author(s):  
Charlotte Victoria Cox ◽  
Paraskevi Diamanti ◽  
Allison Blair

Abstract Abstract 1882 Overall survival rates in paediatric acute lymphoblastic leukaemia (ALL) have dramatically improved but around 20% do not respond to current therapies and subsequently relapse. Leukaemia initiating cells (LIC) are the topic of much investigation, as these cells can self-renew and may have the potential to cause relapse. It has been shown that multiple subpopulations of ALL cells have the ability to initiate the disease in immune deficient mouse models. Therefore, treatment should be targeted at all cells with this capacity, if the disease is to be eradicated. Minimal residual disease (MRD) detection is an invaluable tracking tool to assess early treatment response and recent studies have highlighted potential markers that may improve the sensitivity of MRD detection by flow cytometry. CD97 and CD99 are two markers which were over expressed in paediatric ALL. Incorporating these markers into investigations of LIC may allow discrimination of leukaemia cells from normal haemopoietic stem cells (HSC). In this study we evaluated the expression of CD34 in combination with CD97 in B cell precursor (BCP) ALL cases and CD99 in T-ALL cases and subsequently assessed the functional capacity of the sorted subpopulations in vitro and in vivo. Ten ALL samples (6 B-ALL & 4 T-ALL) with a median age 7 years (range 2–15 years) were studied. One B-ALL case and 3 T-ALL cases were considered high risk by molecular assessment of MRD at day 28 of treatment. Flow cytometric analyses of the ALL samples and 8 normal haemopoietic cell samples demonstrated that both CD97 and CD99 were over expressed in ALL patients (78.9±14.8% & 76.4±32.8%, respectively) when compared to normal haemopoietic cells (14.1±25.4%; p=0.001, 47.1±10%; p=0.03, respectively). Cells were sorted for expression/lack of expression of these markers and proliferation of the sorted cells was assessed in suspension culture over a 6 week period. In the B-ALL patients the CD34+/CD97+ subpopulation represented the bulk of leukaemia cells (65.2±32.1%), the CD34−/CD97+ the smallest fraction (3.3±2.4%) with the CD34+/CD97− and CD34−/CD97− subpopulations representing 21.1±31.5% and 10.5±5.8% of cells, respectively. When the functional capacity of these subpopulations was assessed in vitro greatest expansion was observed in cells derived from CD34+/CD97− subpopulation (2–173 fold) from 9.4×103 at initiation up to 1.5×106 cells at week 6. Expansion was also observed, to a lesser extent in the CD34−/CD97− subpopulation (3.4–28 fold) from 8×103 up to 1.4×106 cells. No expansion was observed in cultures of CD34+/CD97+ and CD34−/CD97− subpopulations but cells were maintained throughout the culture period. These sorted subpopulations were also inoculated into NOD/LtSz-SCID IL-2Rγc null (NSG) mice to evaluate repopulating capacity. To date, engraftment has been achieved with 3 subpopulations; CD34+/CD97+ (3–28.8% CD45+), CD34+/CD97− (0.5–25.5% CD45+) and CD34−/CD97+ (23.8% CD45+) cells. When the functional capacity of T-ALL cases was assessed the CD34+/CD99+ subpopulation represented the bulk of cells at sorting (51.87±47.2%), the CD34+/CD99- subpopulation was the smallest (0.9±0.8%) and the CD34−/CD99+ and CD34−/CD99− subpopulations represented 32.1±38.9% and 27.2±33.4% of cells, respectively. Greatest expansion was observed in cultures of CD34+/CD99- cells (4.6–1798 fold) from 7.5×103 up to 2.6×106 cells at week 6. The other 3 subpopulations expanded to a lesser extent (1.3–216 fold) from 5×103 up to 1.8×106 cells. When the functional capacity of these cells was assessed in NSG mice, engraftment was achieved in all subpopulations; CD34+/CD99+ (87–90.5% CD45+), CD34+/CD99− (1.5–84.9% CD45+), CD34−/CD99+ (31.3–98.6% CD45+) and CD34−/CD99− (3–92.9% CD45+). In some cases, cells recovered from BM of NSG inoculated with CD99− cells had high expression of CD99, typical of the patient samples at diagnosis, indicating that the inoculated CD99− cells had differentiated in vivo. Studies are ongoing to assess the self-renewal capacity of these subpopulations by serial transplantation. The findings to date indicate that targeting CD97 and CD99, either alone or in combination with CD34 would not eliminate all cells with the capacity to initiate and maintain B-ALL and T-ALL, respectively. Further developments in therapy may require targeting leukaemogenic pathways, rather than only cell surface markers to improve survival outcome in paediatric ALL. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Pilar Valderrama ◽  
Thomas G. Wilson Jr

Purpose. Peri-implantitis is one of the major causes of implant failure. The detoxification of the implant surface is necessary to obtain reosseointegration. The aim of this review was to summarize in vitro and in vivo studies as well as clinical trials that have evaluated surgical approaches for detoxification of the implant body surfaces.Materials and Methods. A literature search was conducted using MEDLINE (PubMed) from 1966 to 2013. The outcome variables were the ability of the therapeutic method to eliminate the biofilm and endotoxins from the implant surface, the changes in clinical parameters, radiographic bone fill, and histological reosseointegration.Results. From 574 articles found, 76 were analyzed. The findings, advantages, and disadvantages of using mechanical, chemical methods and lasers are discussed.Conclusions. Complete elimination of the biofilms is difficult to achieve. All therapies induce changes of the chemical and physical properties of the implant surface. Partial reosseointegration after detoxification has been reported in animals. Combination protocols for surgical treatment of peri-implantitis in humans have shown some positive clinical and radiographic results, but long-term evaluation to evaluate the validity and reliability of the techniques is needed.


2020 ◽  
Vol 10 (23) ◽  
pp. 8623
Author(s):  
Alessandro Antonelli ◽  
Francesco Bennardo ◽  
Ylenia Brancaccio ◽  
Selene Barone ◽  
Felice Femiano ◽  
...  

Background: This study aims to analyze bone compaction and osseodensification techniques and to investigate how cancellous bone compaction could influence primary implant stability (PS). Methods: Two different surgical protocols (bone compactors—BC; osseodensification drills—OD) were compared by placing 20 implants into 20 fresh pig ribs for each procedure. Peak insertion torque (PIT) and peak removal torque (PRT) were investigated using an MGT-12 digital torque gauge, and implant stability quotient (ISQ) was analyzed using an Osstell® Beacon device. Results: Analysis of our data (T-test p < 0.05) evidenced no statistically significant difference between BC and OD in terms of PIT (p = 0.33) or ISQ (p = 0.97). The comparison of PRT values showed a statistically significant difference between BC and OD protocols (p = 0.009). Conclusions: Cancellous bone compaction seems to improve PS, preserving a significant amount of bone and evenly spreading trabeculae on the entire implant site. Although the PIT and ISQ values obtained are similar, the PRT values suggest a better biological response from the surrounding bone tissue. Nevertheless, a larger sample and further in vivo studies are necessary to validate the usefulness of this protocol in several clinical settings.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 74
Author(s):  
Marianna O. C. Maia-Pinto ◽  
Ana Carolina B. Brochado ◽  
Bruna Nunes Teixeira ◽  
Suelen C. Sartoretto ◽  
Marcelo J. Uzeda ◽  
...  

This study aimed to assess the response of 3D printed polylactic acid (PLA) scaffolds biomimetically coated with apatite on human primary osteoblast (HOb) spheroids and evaluate the biological response to its association with Bone Morphogenetic Protein 2 (rhBMP-2) in rat calvaria. PLA scaffolds were produced via 3D printing, soaked in simulated body fluid (SBF) solution to promote apatite deposition, and characterized by physical-chemical, morphological, and mechanical properties. PLA-CaP scaffolds with interconnected porous and mechanical properties suitable for bone repairing were produced with reproducibility. The in vitro biological response was assessed with human primary osteoblast spheroids. Increased cell adhesion and the rise of in vitro release of growth factors (Platelet-Derived Growth Factor (PDGF), Basic Fibroblast Growth Factor (bFGF), Vascular Endothelial Growth Factor (VEGF) was observed for PLA-CaP scaffolds, when pre-treated with fetal bovine serum (FBS). This pre-treatment with FBS was done in a way to enhance the adsorption of serum proteins, increasing the number of bioactive sites on the surface of scaffolds, and to partially mimic in vivo interactions. The in vivo analysis was conducted through the implantation of 3D printed PLA scaffolds either alone, coated with apatite (PLA-CaP) or PLA-CaP loaded with rhBMP-2 on critical-sized defects (8 mm) of rat calvaria. PLA-CaP+rhBMP2 presented higher values of newly formed bone (NFB) than other groups at all in vivo experimental periods (p < 0.05), attaining 44.85% of NFB after six months. These findings indicated two new potential candidates as alternatives to autogenous bone grafts for long-term treatment: (i) 3D-printed PLA-CaP scaffold associated with spheroids, since it can reduce the time of repair in situ by expression of biomolecules and growth factors; and (ii) 3D-printed PLA-CaP functionalized rhBMP2 scaffold, a biocompatible, bioactive biomaterial, with osteoconductivity and osteoinductivity.


2001 ◽  
Vol 45 (9) ◽  
pp. 2420-2426 ◽  
Author(s):  
S. M. Salama ◽  
H. Atwal ◽  
A. Gandhi ◽  
J. Simon ◽  
M. Poglod ◽  
...  

ABSTRACT The in vitro and in vivo activities of four azole compounds belonging to a new series of 2(2,4-difluorophenyl)-3-(4-substituted piperazin-1-yl)-1-(1,2,4-triazol-1-yl) butanol antifungal agents is described. The compounds were selected from a library of azole compounds synthesized by our group. The in vitro activities of Syn2869, Syn2836, Syn2903, and Syn2921 against a panel of over 240 recently collected clinical isolates of yeast and molds were determined, and the results were compared with those obtained with fluconazole (FLC), itraconazole (ITC), and amphotericin B (AMB). The MICs at which 90% of the isolates were inhibited (MIC90s) for the four test compounds for strains of Candida spp. ranged from <0.048 to 0.78 μg/ml. All compounds were also active against FLC-resistant Candida albicans and otherCandida sp. strains. Moreover, MIC90s for strains of Cryptococcus neoformans,Aspergillus spp., Trichophyton spp., andMicrosporum spp. were also low and ranged from <0.048 to 0.39 μg/ml. The test compounds produced a fungistatic pattern during the time-kill kinetic studies. In vivo studies indicated that all four test compounds have good efficacies against C. albicans in a murine systemic infection model and significantly improved the survival rates of the infected mice. The results for Syn2903 were similar to those for FLC, while the other compounds were slightly less effective but had ranges of activities similar to the range of activity of ITC. The compounds were also evaluated against anAspergillus fumigatus systemic infection. Syn2903 was also superior to ITC, whereas the efficacy data for the other compounds were similar to those for ITC. It was concluded from the data generated for this new series of azole compounds in the studies described above that further pharmacokinetic and toxicologic evaluations are warranted prior to selection of a candidate compound for preclinical testing.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2520
Author(s):  
Ritika Kurian ◽  
William Hedrich ◽  
Bryan Mackowiak ◽  
Linhao Li ◽  
Hongbing Wang

Non-Hodgkin’s lymphoma (NHL) is a malignant cancer originating in the lymphatic system with a 25–30% mortality rate. CHOP, consisting of cyclophosphamide (CPA), doxorubicin, vincristine, and prednisone, is a first-generation chemotherapy extensively used to treat NHL. However, poor survival rates among patients in advanced stages of NHL shows a need to improve this standard of care treatment. CPA, an integral component of CHOP, is a prodrug that requires CYP2B6-mediated bioactivation to 4-hydroxy-CPA (4-OH-CPA). The expression of CYP2B6 is transcriptionally regulated by the constitutive androstane receptor (CAR, NRi13). We have previously demonstrated that the induction of hepatic CYP2B6 by CITCO, a selective human CAR (hCAR) agonist, results in CHOP’s enhanced antineoplastic effects in vitro. Here, we investigate the in vivo potential of CITCO as an adjuvant of CPA-based NHL treatment in a hCAR-transgenic mouse line. Our results demonstrate that the addition of CITCO to the CHOP regimen leads to significant suppression of the growth of EL-4 xenografts in hCAR-transgenic mice accompanied by reduced expression of cyclin-D1, ki67, Pcna, and increased caspase 3 fragmentation in tumor tissues. CITCO robustly induced the expression of cyp2b10 (murine ortholog of CYP2B6) through hCAR activation and increased plasma concentrations of 4-OH-CPA. Comparing to intraperitoneal injection, oral gavage of CITCO results in optimal hepatic cyp2b10 induction. Our in vivo studies have collectively uncovered CITCO as an effective facilitator for CPA-based NHL treatment with a pharmacokinetic profile favoring oral administration, promoting CITCO as a promising adjuvant candidate for CPA-based regimens.


Nanomedicine ◽  
2020 ◽  
Vol 15 (18) ◽  
pp. 1779-1793
Author(s):  
Yu Wu ◽  
Haikuo Tang ◽  
Lin Liu ◽  
Qianting He ◽  
Luodan Zhao ◽  
...  

Aim: To evaluate the biological function of titanium implants coated with cell-derived mineralized extracellular matrix, which mimics a bony microenvironment. Materials & methods: A biomimetic titanium implant was fabricated primarily by modifying the titanium surface with TiO2 nanotubes or sand-blasted, acid-etched topography, then was coated with mineralized extracellular matrix constructed by culturing bone marrow mesenchymal stromal cells. The osteogenic ability of biomimetic titanium surface in vitro and in vivo were evaluated. Results: In vitro and in vivo studies revealed that the biomimetic titanium implant enhanced and accelerated osteogenesis of bone marrow stromal cells by increasing cell proliferation and calcium deposition. Conclusion: By combining surface topography modification with biological coating, the results provided a valuable method to produce biomimetic titanium implants with excellent osteogenic ability.


2015 ◽  
Vol 26 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Sorin Cosmin Cosma ◽  
Nicolae Balc ◽  
Marioara Moldovan ◽  
Cristina Ștefana Miron-Borzan

AbstractThe aim of this systematic review was to identify new methods of surface treatments applied on titanium grafts and their clinical and histological outcomes, including different routes for surface treatments, respectively the results of in vitro or in vivo tests. These surface modifications analysed meet three main requirements: to prevent nonspecific absorption of denatured protein on the surface, to attract native tissue cells or progenitor cells capable of differentiation in an appropriate manner or to facilitate biochemical signals to induce biochemical healing mechanisms. Therefore, cells will recognize these surface modifications and will be influenced in their adhesion behavior, profiling and differentiation. This review summarizes some of the recent developments in coatings for medical field.


Sign in / Sign up

Export Citation Format

Share Document