scholarly journals Nrf2 and Notch Signaling in Lung Cancer: Near the Crossroad

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Angelo Sparaneo ◽  
Federico Pio Fabrizio ◽  
Lucia Anna Muscarella

The transcription factor Nrf2 (NF-E2 related factor 2) is a master regulator of the cell antioxidant response associated with tumor growth and resistance to cytotoxic treatments. In particular, Nrf2 induces upregulation of cytoprotective genes by interacting with the closely situated AREs (Antioxidant Response Elements) in response to endogenous or exogenous stress stimuli and takes part to several oncogenic signaling pathways. Among these, the crosstalk with Notch pathway has been shown to enhance cytoprotection and maintenance of cellular homeostasis, tissue organization by modulating cell proliferation kinetics, and stem cell self-renewal in several organs. The role of Notch and Nrf2 related pathways in tumorigenesis is highly variable and when they are both abnormally activated they can synergistically cause neoplastic proliferation by promoting cell survival, differentiation, invasion, and metastases. NFE2L2, KEAP1, and NOTCH genes family appear in the list of significantly mutated genes in tumors in both combined and individual sets, supporting the crucial role that the aberrant Nrf2-Notch crosstalk might have in cancerogenesis. In this review, we summarize current knowledge about the alterations of Nrf2 and Notch pathways and their reciprocal transcriptional regulation throughout tumorigenesis and progression of lung tumors, supporting the potentiality of putative biomarkers and therapeutic targets.

2021 ◽  
Vol 22 (15) ◽  
pp. 8223
Author(s):  
Violetta Krajka-Kuźniak ◽  
Wanda Baer-Dubowska

Nrf2 (nuclear factor erythroid 2-related factor 2) and NF-κB (nuclear factor–kappa B) signaling pathways play a central role in suppressing or inducing inflammation and angiogenesis processes. Therefore, they are involved in many steps of carcinogenesis through cooperation with multiple signaling molecules and pathways. Targeting both transcription factors simultaneously may be considered an equally important strategy for cancer chemoprevention and therapy. Several hundreds of phytochemicals, mainly edible plant and vegetable components, were shown to activate Nrf2 and mediate antioxidant response. A similar number of phytochemicals was revealed to affect NF-κB. While activation of Nrf2 and inhibition of NF-κB may protect normal cells against cancer initiation and promotion, enhanced expression and activation in cancer cells may lead to resistance to conventional chemo- or radiotherapy. Most phytochemicals, through different mechanisms, activate Nrf2, but others, such as luteolin, can act as inhibitors of both Nrf2 and NF-κB. Despite many experimental data confirming the above mechanisms currently, limited evidence exists demonstrating such activity in humans. Combinations of phytochemicals resembling that in a natural food matrix but allowing higher concentrations may improve their modulating effect on Nrf2 and NF-κB and ultimately cancer prevention and therapy. This review presents the current knowledge on the effect of selected phytochemicals and their combinations on Nrf2 and NF-κB activities in the above context.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yasuhiro Nakagami

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that binds to antioxidant response elements located in the promoter region of genes encoding many antioxidant enzymes and phase II detoxifying enzymes. Activation of Nrf2 functions is one of the critical defensive mechanisms against oxidative stress in many species. The retina is constantly exposed to reactive oxygen species, and oxidative stress is a major contributor to age-related macular diseases. Moreover, the resulting inflammation and neuronal degeneration are also related to other retinal diseases. The well-known Nrf2 activators, bardoxolone methyl and its derivatives, have been the subject of a number of clinical trials, including those aimed at treating chronic kidney disease, pulmonary arterial hypertension, and mitochondrial myopathies. Recent studies suggest that Nrf2 activation protects the retina from retinal diseases. In particular, this is supported by the finding that Nrf2 knockout mice display age-related retinal degeneration. Moreover, the concept has been validated by the efficacy of Nrf2 activators in a number of retinal pathological models. We have also recently succeeded in generating a novel Nrf2 activator, RS9, using a biotransformation technique. This review discusses current links between retinal diseases and Nrf2 and the possibility of treating retinal diseases by activating the Nrf2 signaling pathway.


Blood ◽  
2009 ◽  
Vol 113 (8) ◽  
pp. 1619-1630 ◽  
Author(s):  
Alfonso Quintás-Cardama ◽  
Jorge Cortes

Abstract Chronic myeloid leukemia (CML) has been regarded as the paradigmatic example of a malignancy defined by a unique molecular event, the BCR-ABL1 oncogene. Decades of research zeroing in on the role of BCR-ABL1 kinase in the pathogenesis of CML have culminated in the development of highly efficacious therapeutics that, like imatinib mesylate, target the oncogenic kinase activity of BCR-ABL1. In recent years, most research efforts in CML have been devoted to developing novel tyrosine kinase inhibitors (TKIs) as well as to elucidating the mechanisms of resistance to imatinib and other TKIs. Nonetheless, primordial aspects of the pathogenesis of CML, such as the mechanisms responsible for the transition from chronic phase to blast crisis, the causes of genomic instability and faulty DNA repair, the phenomenon of stem cell quiescence, the role of tumor suppressors in TKI resistance and CML progression, or the cross-talk between BCR-ABL1 and other oncogenic signaling pathways, still remain poorly understood. Herein, we synthesize the most relevant and current knowledge on such areas of the pathogenesis of CML.


2017 ◽  
Vol 312 (2) ◽  
pp. L155-L162 ◽  
Author(s):  
Hailin Zhao ◽  
Shiori Eguchi ◽  
Azeem Alam ◽  
Daqing Ma

Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a ubiquitous master transcription factor that upregulates antioxidant response elements (AREs)-mediated expression of antioxidant enzyme and cytoprotective proteins. Activation of Nrf2 has been shown to be protective against lung injury. In the lung, diverse stimuli including environmental oxidants, medicinal agents, and pathogens can activate Nrf2. Nrf2 translocates to the nucleus and binds to an ARE. Through transcriptional induction of ARE-bearing genes encoding antioxidant-detoxifying proteins, Nrf2 induces cellular rescue pathways against oxidative pulmonary injury, abnormal inflammatory and immune responses, and apoptosis. The Nrf2-antioxidant pathway has been shown to be important in the protection against various lung injuries including acute lung injury/acute respiratory distress syndrome and bronchopulmonary dysplasia, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, asthma, and allergy and was widely examined for new therapeutic targets. The present review explores the protective role of Nrf-2 against lung injury and the therapeutic potential in targeting Nrf-2.


2019 ◽  
Vol 116 (25) ◽  
pp. 12516-12523 ◽  
Author(s):  
Gahee Bahn ◽  
Jong-Sung Park ◽  
Ui Jeong Yun ◽  
Yoon Jee Lee ◽  
Yuri Choi ◽  
...  

BACE1 is the rate-limiting enzyme for amyloid-β peptides (Aβ) generation, a key event in the pathogenesis of Alzheimer’s disease (AD). By an unknown mechanism, levels of BACE1 and a BACE1 mRNA-stabilizing antisense RNA (BACE1-AS) are elevated in the brains of AD patients, implicating that dysregulation of BACE1 expression plays an important role in AD pathogenesis. We found that nuclear factor erythroid-derived 2-related factor 2 (NRF2/NFE2L2) represses the expression of BACE1 and BACE1-AS through binding to antioxidant response elements (AREs) in their promoters of mouse and human. NRF2-mediated inhibition of BACE1 and BACE1-AS expression is independent of redox regulation. NRF2 activation decreases production of BACE1 and BACE1-AS transcripts and Aβ production and ameliorates cognitive deficits in animal models of AD. Depletion of NRF2 increases BACE1 and BACE1-AS expression and Aβ production and worsens cognitive deficits. Our findings suggest that activation of NRF2 can prevent a key early pathogenic process in AD.


Medicines ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 24 ◽  
Author(s):  
Mohd Farhan ◽  
Mohammad Ullah ◽  
Mohd Faisal ◽  
Ammad Farooqi ◽  
Uteuliyev Sabitaliyevich ◽  
...  

Numerous studies support the potent anticancer activity of resveratrol and its regulation of key oncogenic signaling pathways. Additionally, the activation of sirtuin 1, a deacetylase, by resveratrol has been known for many years, making resveratrol perhaps one of the earliest nutraceuticals with associated epigenetic activity. Such epigenetic regulation by resveratrol, and the mechanism thereof, has attracted much attention in the past decade. Focusing on methylation and acetylation, the two classical epigenetic regulations, we showcase the potential of resveratrol as an effective anticancer agent by virtue of its ability to induce differential epigenetic changes. We discuss the de-repression of tumor suppressors such as BRCA-1, nuclear factor erythroid 2-related factor 2 (NRF2) and Ras Associated Domain family-1α (RASSF-1α) by methylation, PAX1 by acetylation and the phosphatase and tensin homologue (PTEN) by both methylation and acetylation, in addition to the epigenetic regulation of oncogenic NF-κB and STAT3 signaling by resveratrol. Further, we evaluate the literature supporting the potentiation of HDAC inhibitors and the inhibition of DNMTs by resveratrol in different human cancers. This discussion underlines a robust epigenetic activity of resveratrol that warrants further evaluation, particularly in clinical settings.


2020 ◽  
Vol 21 (9) ◽  
pp. 3232
Author(s):  
Tao Su ◽  
Haile Yu ◽  
Gan Luo ◽  
Mengxia Wang ◽  
Changfan Zhou ◽  
...  

The endometrium is an important tissue for pregnancy and plays an important role in reproduction. In this study, high-throughput transcriptome sequencing was performed in endometrium samples of Meishan and Yorkshire pigs on days 18 and 32 of pregnancy. Aldo-keto reductase family 1 member C1 (AKR1C1) was found to be a differentially expressed gene, and was identified by quantitative real-time PCR (qRT-PCR) and Western blot. Immunohistochemistry results revealed the cellular localization of the AKR1C1 protein in the endometrium. Luciferase activity assay demonstrated that the AKR1C1 core promoter region was located in the region from −706 to −564, containing two nuclear factor erythroid 2-related factor 2 (NRF2) binding sites (antioxidant response elements, AREs). XLOC-2222497 was identified as a nuclear long non-coding RNA (lncRNA) highly expressed in the endometrium. XLOC-2222497 overexpression and knockdown have an effect on the expression of AKR1C1. Endocrinologic measurement showed the difference in progesterone levels between Meishan and Yorkshire pigs. Progesterone treatment upregulated AKR1C1 and XLOC-2222497 expression in porcine endometrial epithelial cells. In conclusion, transcriptome analysis revealed differentially expressed transcripts during the early pregnancy process. Further experiments demonstrated the interaction of XLOC-2222497/AKR1C1/progesterone in the endometrium and provided new potential targets for pregnancy maintenance and its control.


2015 ◽  
Vol 43 (4) ◽  
pp. 674-679 ◽  
Author(s):  
Geoff Wells

The transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2) up-regulates the expression of a range of cytoprotective enzymes with antioxidant response elements in their promoter regions and thus can protect cells against oxidative damage. Increasing Nrf2 activity has been proposed as a therapeutic intervention in a range of chronic neurodegenerative conditions and cancer chemoprevention. One of the main mechanisms by which Nrf2 is negatively regulated involves an interaction with the ubiquitination facilitator protein, Kelch-like ECH-associated protein 1 (Keap1) that facilitates degradation of Nrf2. Inhibition of this process underlies the mode of action of a broad group of compounds that increase Nrf2 activity. A number of natural products, including the isothiocyanate sulforaphane, up-regulate Nrf2 by interacting with Keap1 in a covalent manner to stall its activity. Recently, a number of peptide and small molecule inhibitors of the protein-protein interaction (PPI) between Keap1 and Nrf2 have been described. These classes of compound have contrasting modes of action at the molecular level and there is emerging evidence that their biological activities have similarities and differences. This review describes the various classes of PPI inhibitor that have been described in the literature and the biological evaluations that have been performed.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5985
Author(s):  
Sajad Fakhri ◽  
Mohammad Mehdi Gravandi ◽  
Sadaf Abdian ◽  
Esra Küpeli Akkol ◽  
Mohammad Hosein Farzaei ◽  
...  

Neurodegenerative diseases (NDDs) are one of the leading causes of death and disability in humans. From a mechanistic perspective, the complexity of pathophysiological mechanisms contributes to NDDs. Therefore, there is an urgency to provide novel multi-target agents towards the simultaneous modulation of dysregulated pathways against NDDs. Besides, their lack of effectiveness and associated side effects have contributed to the lack of conventional therapies as suitable therapeutic agents. Prevailing reports have introduced plant secondary metabolites as promising multi-target agents in combating NDDs. Polydatin is a natural phenolic compound, employing potential mechanisms in fighting NDDs. It is considered an auspicious phytochemical in modulating neuroinflammatory/apoptotic/autophagy/oxidative stress signaling mediators such as nuclear factor-κB (NF-κB), NF-E2–related factor 2 (Nrf2)/antioxidant response elements (ARE), matrix metalloproteinase (MMPs), interleukins (ILs), phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt), and the extracellular regulated kinase (ERK)/mitogen-activated protein kinase (MAPK). Accordingly, polydatin potentially counteracts Alzheimer’s disease, cognition/memory dysfunction, Parkinson’s disease, brain/spinal cord injuries, ischemic stroke, and miscellaneous neuronal dysfunctionalities. The present study provides all of the neuroprotective mechanisms of polydatin in various NDDs. Additionally, the novel delivery systems of polydatin are provided regarding increasing its safety, solubility, bioavailability, and efficacy, as well as developing a long-lasting therapeutic concentration of polydatin in the central nervous system, possessing fewer side effects.


Viruses ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 538 ◽  
Author(s):  
Alessia Virzì ◽  
Armando Roca Suarez ◽  
Thomas Baumert ◽  
Joachim Lupberger

The liver is frequently exposed to toxins, metabolites, and oxidative stress, which can challenge organ function and genomic stability. Liver regeneration is therefore a highly regulated process involving several sequential signaling events. It is thus not surprising that individual oncogenic mutations in hepatocytes do not necessarily lead to cancer and that the genetic profiles of hepatocellular carcinomas (HCCs) are highly heterogeneous. Long-term infection with hepatitis C virus (HCV) creates an oncogenic environment by a combination of viral protein expression, persistent liver inflammation, oxidative stress, and chronically deregulated signaling events that cumulate as a tipping point for genetic stability. Although novel direct-acting antivirals (DAA)-based treatments efficiently eradicate HCV, the associated HCC risk cannot be fully eliminated by viral cure in patients with advanced liver disease. This suggests that HCV may persistently deregulate signaling pathways beyond viral cure and thereby continue to perturb cancer-relevant gene function. In this review, we summarize the current knowledge about oncogenic signaling pathways derailed by chronic HCV infection. This will not only help to understand the mechanisms of hepatocarcinogenesis but will also highlight potential chemopreventive strategies to help patients with a high-risk profile of developing HCC.


Sign in / Sign up

Export Citation Format

Share Document