scholarly journals The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury

2017 ◽  
Vol 312 (2) ◽  
pp. L155-L162 ◽  
Author(s):  
Hailin Zhao ◽  
Shiori Eguchi ◽  
Azeem Alam ◽  
Daqing Ma

Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a ubiquitous master transcription factor that upregulates antioxidant response elements (AREs)-mediated expression of antioxidant enzyme and cytoprotective proteins. Activation of Nrf2 has been shown to be protective against lung injury. In the lung, diverse stimuli including environmental oxidants, medicinal agents, and pathogens can activate Nrf2. Nrf2 translocates to the nucleus and binds to an ARE. Through transcriptional induction of ARE-bearing genes encoding antioxidant-detoxifying proteins, Nrf2 induces cellular rescue pathways against oxidative pulmonary injury, abnormal inflammatory and immune responses, and apoptosis. The Nrf2-antioxidant pathway has been shown to be important in the protection against various lung injuries including acute lung injury/acute respiratory distress syndrome and bronchopulmonary dysplasia, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, asthma, and allergy and was widely examined for new therapeutic targets. The present review explores the protective role of Nrf-2 against lung injury and the therapeutic potential in targeting Nrf-2.

2018 ◽  
Vol 8 ◽  
Author(s):  
Xiaoli Tian ◽  
Feng Wang ◽  
Yuan Luo ◽  
Shijing Ma ◽  
Nannan Zhang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Camille Audousset ◽  
Toby McGovern ◽  
James G. Martin

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a major transcription factor involved in redox homeostasis and in the response induced by oxidative injury. Nrf2 is present in an inactive state in the cytoplasm of cells. Its activation by internal or external stimuli, such as infections or pollution, leads to the transcription of more than 500 elements through its binding to the antioxidant response element. The lungs are particularly susceptible to factors that generate oxidative stress such as infections, allergens and hyperoxia. Nrf2 has a crucial protective role against these ROS. Oxidative stress and subsequent activation of Nrf2 have been demonstrated in many human respiratory diseases affecting the airways, including asthma and chronic obstructive pulmonary disease (COPD), or the pulmonary parenchyma such as acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. Several compounds, both naturally occurring and synthetic, have been identified as Nrf2 inducers and enhance the activation of Nrf2 and expression of Nrf2-dependent genes. These inducers have proven particularly effective at reducing the severity of the oxidative stress-driven lung injury in various animal models. In humans, these compounds offer promise as potential therapeutic strategies for the management of respiratory pathologies associated with oxidative stress but there is thus far little evidence of efficacy through human trials. The purpose of this review is to summarize the involvement of Nrf2 and its inducers in ARDS, COPD, asthma and lung fibrosis in both human and in experimental models.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3064 ◽  
Author(s):  
Yuzhu He ◽  
Byung-gook Kim ◽  
Hye-Eun Kim ◽  
Qiaochu Sun ◽  
Shuhan Shi ◽  
...  

Epidermal inflammation is caused by various bacterial infectious diseases that impair the skin health. Feruloylserotonin (FS) belongs to the hydroxycinnamic acid amides of serotonin, which mainly exists in safflower seeds and has been proven to have anti-inflammatory and antioxidant activities. Human epidermis mainly comprises keratinocytes whose inflammation causes skin problems. This study investigated the protective effects of FS on the keratinocyte with lipopolysaccharides (LPS)-induced human HaCaT cells and elucidated its underlying mechanisms of action. The mechanism was investigated by analyzing cell viability, PGE2 levels, cell apoptosis, nuclear factor erythroid 2-related factor 2 (Nrf2) translocation, and TLR4/NF-κB pathway. The anti-inflammatory effects of FS were assessed by inhibiting the inflammation via down-regulating the TLR4/NF-κB pathway. Additionally, FS promoted Nrf2 translocation to the nucleus, indicating that FS showed anti-oxidative activities. Furthermore, the antioxidative and anti-inflammatory effects of FS were found to benefit each other, but were independent. Thus, FS can be used as a component to manage epidermal inflammation due to its anti-inflammatory and anti-oxidative properties.


Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 198 ◽  
Author(s):  
Ba-Wool Lee ◽  
Ji-Hye Ha ◽  
Han-Gyo Shin ◽  
Seong-Hun Jeong ◽  
Da-Bin Jeon ◽  
...  

Spiraea prunifolia var. simpliciflora (SP) is traditionally used as an herbal remedy to treat fever, malaria, and emesis. This study aimed to evaluate the anti-oxidative and anti-inflammatory properties of the methanol extract of SP leaves in tumor necrosis factor (TNF)-α-stimulated NCI-H292 cells and in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. SP decreased the number of inflammatory cells and the levels of TNF-α, interleukin (IL)-1β, and IL-6 in the bronchoalveolar lavage fluid, and inflammatory cell infiltration in the lung tissues of SP-treated mice. In addition, SP significantly suppressed the mRNA and protein levels of TNF-α, IL-1β, and IL-6 in TNF-α-stimulated NCI-H292 cells. SP significantly suppressed the phosphorylation of the mitogen-activated protein kinases (MAPKs) and p65-nuclear factor-kappa B (NF-κB) in LPS-induced ALI mice and TNF-α-stimulated NCI-H292 cells. SP treatment enhanced the nuclear translocation of nuclear factor erythroid 2-related factor (Nrf2) with upregulated antioxidant enzymes and suppressed reactive oxygen species (ROS)-mediated oxidative stress in the lung tissues of LPS-induced ALI model and TNF-α-stimulated NCI-H292 cells. Collectively, SP effectively inhibited airway inflammation and ROS-mediated oxidative stress, which was closely related to its ability to induce activation of Nrf2 and inhibit the phosphorylation of MAPKs and NF-κB. These findings suggest that SP has therapeutic potential for the treatment of ALI.


2016 ◽  
Vol 37 (4) ◽  
pp. 1014-1022 ◽  
Author(s):  
HAIGE ZHAO ◽  
SIJING HAO ◽  
HONGFEI XU ◽  
LIANG MA ◽  
ZHENG ZHANG ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 657
Author(s):  
Tunyu Jian ◽  
Xiaoqin Ding ◽  
Jiawei Li ◽  
Yuexian Wu ◽  
Bingru Ren ◽  
...  

Cigarette smoking (CS) is believed to be an important inducement in the pathological development of chronic obstructive pulmonary disease (COPD), a progressive lung disease. Loquat is an Asian evergreen tree commonly cultivated for its fruit. Its leaf has long been used as an important material for both functional and medicinal applications in the treatment of lung disease in China and Japan. As the principal functional components of loquat leaf, triterpene acids (TAs) have shown notable anti-inflammatory activity. However, their protective activity and underlying action of mechanism on CS-induced COPD inflammation are not yet well understood. In the present study, male C57BL/6 mice were challenged with CS for 12 weeks, and from the seventh week of CS exposure, mice were fed with TAs (50 and 100 mg/kg) for 6 weeks to figure out the therapeutic effect and molecular mechanism of TAs in CS-induced COPD inflammation. The results demonstrate that TA suppressed the lung histological changes in CS-exposed mice, as evidenced by the diminished generation of pro-inflammatory cytokines, including interleukin 1β (IL-1β), IL-2, IL-6, and tumor necrosis factor α (TNF-α). Moreover, TA treatment significantly inhibited the malondialdehyde (MDA) level and increased superoxide dismutase (SOD) activity. In addition, TAs increased the phosphorylation of AMP-activated protein kinase (AMPK) and nuclear factor erythroid-2-related factor-2 (Nrf2) expression level, while inhibiting phosphorylation of nuclear factor kappa B (NFκB) and inducible nitric oxide synthase (iNOS) expression in CS-induced COPD. In summary, our study reveals a protective effect and putative mechanism of TA action involving the inhibition of inflammation by regulating AMPK/Nrf2 and NFκB pathways. Our findings suggest that TAs could be considered as a promising functional material for treating CS-induced COPD.


2014 ◽  
Vol 34 (1) ◽  
pp. 32-43 ◽  
Author(s):  
G-L Hong ◽  
Q-Q Cai ◽  
J-P Tan ◽  
X-Z Jiang ◽  
G-J Zhao ◽  
...  

Objective: To investigate the effects of overexpression of nuclear factor E2-related factor-2 (NRF2) on lung injury in rats exposed to paraquat (PQ) poisoning. Methods: A mifepristone (RU486)-inducible recombinant adenoviral vector carrying the human NRF2 gene (Ad-RUNRF2) was constructed and transfected via airway into the rats 7 days before the administration of RU486. Rats were orally challenged with PQ at 20 mg/kg 24 h after the injection of RU486. On days 0.5, 3 and 21 after PQ poisoning, the expressions of NRF2 and cytokines related to inflammation and oxidation in lung tissue were examined. Results: RU486 remarkably enhanced NRF2 mRNA and NRF2 protein levels in Ad-RUNRF2-transfected rats in a dose-dependent manner ( p < 0.01). PQ stimulated compensatory overexpression of NRF2, heme oxygenase 1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO-1) in lungs on days 0.5 and 3 after exposure ( p < 0.05), but depleted the expression of catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione (GSH), with an increased malondialdehyde (MDA) ( p < 0.05). However, pretreatment with Ad-RUNRF2 and RU486 strongly enhanced the expression levels of NRF2, HO-1, NQO-1, CAT and GSH-Px in the lungs of PQ intoxicated rats, with increased GSH and decreased MDA ( p < 0.05). Pretreatment with Ad-RUNRF2 and RU486 also strongly suppressed the PQ-induced activation of nuclear factor κB (NF-κB) and decreased the levels of tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). In addition, Ad-RUNRF2 and RU486 induction significantly reduced PQ-induced pathological changes in lungs and attenuated lung oedema and protein leakage caused by PQ ( p < 0.05). Conclusion: RU486-induced overexpression of NRF2 in lungs transfected with Ad-RUNRF2 can ameliorate PQ-induced lung injury by the activation of the NRF2-antioxidant response element (ARE) pathway.


Sign in / Sign up

Export Citation Format

Share Document