scholarly journals PAN-811 Blocks Chemotherapy Drug-InducedIn VitroNeurotoxicity, While Not Affecting Suppression of Cancer Cell Growth

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Zhi-Gang Jiang ◽  
Steven A. Fuller ◽  
Hossein A. Ghanbari

Chemotherapy often results in cognitive impairment, and no neuroprotective drug is now available. This study aimed to understand underlying neurotoxicological mechanisms of anticancer drugs and to evaluate neuroprotective effects of PAN-811. Primary neurons in different concentrations of antioxidants (AOs) were insulted for 3 days with methotrexate (MTX), 5-fluorouracil (5-FU), or cisplatin (CDDP) in the absence or presence of PAN-811·Cl·H2O. The effect of PAN-811 on the anticancer activity of tested drugs was also examined using mouse and human cancer cells (BNLT3 and H460) to assess any negative interference. Cell membrane integrity, survival, and death and intramitochondrial reactive oxygen species (ROS) were measured. All tested anticancer drugs elicited neurotoxicity only under low levels of AO and elicited a ROS increase. These results suggested that ROS mediates neurotoxicity of tested anticancer drugs. PAN-811 dose-dependently suppressed increased ROS and blocked the neurotoxicity when neurons were insulted with a tested anticancer drug. PAN-811 did not interfere with anticancer activity of anticancer drugs against BNLT3 cells. PAN-811 did not inhibit MTX-induced death of H460 cells but, interestingly, demonstrated a synergistic effect with 5-FU or CDDP in reducing cancer cell viability. Thus, PAN-811 can be a potent drug candidate for chemotherapy-induced cognitive impairment.

Amino Acids ◽  
2021 ◽  
Author(s):  
Gary K. Scott ◽  
Sophia Mahoney ◽  
Madeleine Scott ◽  
Ashley Loureiro ◽  
Alejandro Lopez-Ramirez ◽  
...  

AbstractProline dehydrogenase (PRODH) is a mitochondrial inner membrane flavoprotein critical for cancer cell survival under stress conditions and newly recognized as a potential target for cancer drug development. Reversible (competitive) and irreversible (suicide) inhibitors of PRODH have been shown in vivo to inhibit cancer cell growth with excellent host tolerance. Surprisingly, the PRODH suicide inhibitor N-propargylglycine (N-PPG) also induces rapid decay of PRODH with concordant upregulation of mitochondrial chaperones (HSP-60, GRP-75) and the inner membrane protease YME1L1, signifying activation of the mitochondrial unfolded protein response (UPRmt) independent of anticancer activity. The present study was undertaken to address two aims: (i) use PRODH overexpressing human cancer cells (ZR-75-1) to confirm the UPRmt inducing properties of N-PPG relative to another equipotent irreversible PRODH inhibitor, thiazolidine-2-carboxylate (T2C); and (ii) employ biochemical and transcriptomic approaches to determine if orally administered N-PPG can penetrate the blood–brain barrier, essential for its future use as a brain cancer therapeutic, and also potentially protect normal brain tissue by inducing mitohormesis. Oral daily treatments of N-PPG produced a dose-dependent decline in brain mitochondrial PRODH protein without detectable impairment in mouse health; furthermore, mice repeatedly dosed with 50 mg/kg N-PPG showed increased brain expression of the mitohormesis associated protease, YME1L1. Whole brain transcriptome (RNAseq) analyses of these mice revealed significant gene set enrichment in N-PPG stimulated neural processes (FDR p < 0.05). Given this in vivo evidence of brain bioavailability and neural mitohormesis induction, N-PPG appears to be unique among anticancer agents and should be evaluated for repurposing as a pharmaceutical capable of mitigating the proteotoxic mechanisms driving neurodegenerative disorders.


2020 ◽  
Vol 17 (5) ◽  
pp. 345-351
Author(s):  
Syndla Premalatha ◽  
G. Rambabu ◽  
Islavathu Hatti ◽  
Dittakavi Ramachandran

A new series of 3-(3,4,5-trimethoxyphenyl)-5-(2-(5-arylbenzo[b]thiophen-3-yl)oxa zol-5- yl)isoxazole derivatives were designed and synthesized. All these derivatives were evaluated for their anticancer activity against various human cancer cell lines such as MCF-7 (breast cancer), A549 (lung cancer), DU-145 (prostate cancer) and MDA MB-231 (breast cancer)-four human cancer cell lines by using MTT assay. Here, etoposide was used as a standard reference drug and most of the compounds were exhibited good anticancer activity with respect to cell lines. Among all compounds, five compounds 11b, 11c, 11f, 11i and 11j showed more potent activity than standard drug, in which, compound 11f was the most promising compound.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shigetoshi Yokoyama ◽  
Shun Nakayama ◽  
Lei Xu ◽  
Aprile L. Pilon ◽  
Shioko Kimura

AbstractNon-canonical inflammasome activation that recognizes intracellular lipopolysaccharide (LPS) causes pyroptosis, the inflammatory death of innate immune cells. The role of pyroptosis in innate immune cells is to rapidly eliminate pathogen-infected cells and limit the replication niche in the host body. Whether this rapid cell elimination process of pyroptosis plays a role in elimination of cancer cells is largely unknown. Our earlier study demonstrated that a multi-functional secreted protein, secretoglobin (SCGB) 3A2, chaperones LPS to cytosol, and activates caspase-11 and the non-canonical inflammasome pathway, leading to pyroptosis. Here we show that SCGB3A2 exhibits marked anti-cancer activity against 5 out of 11 of human non-small cell lung cancer cell lines in mouse xenographs, while no effect was observed in 6 of 6 small cell lung cancer cell lines examined. All SCGB3A2-LPS-sensitive cells express syndecan 1 (SDC1), a SCGB3A2 cell surface receptor, and caspase-4 (CASP4), a critical component of the non-canonical inflammasome pathway. Two epithelial-derived colon cancer cell lines expressing SDC1 and CASP4 were also susceptible to SCGB3A2-LPS treatment. TCGA analysis revealed that lung adenocarcinoma patients with higher SCGB3A2 mRNA levels exhibited better survival. These data suggest that SCGB3A2 uses the machinery of pyroptosis for the elimination of human cancer cells via the non-canonical inflammasome pathway, and that SCGB3A2 may serve as a novel therapeutic to treat cancer, perhaps in combination with immuno and/or targeted therapies.


Author(s):  
Ateeq Ahmed Al-Zahrani

Several anticancer drugs have been developed from natural products such as plants. Successful experiments in inhibiting the growth of human cancer cell lines using Saudi plants were published over the last three decades. Up to date, there is no Saudi anticancer plants database as a comprehensive source for the interesting data generated from these experiments. Therefore, there was a need for creating a database to collect, organize, search and retrieve such data. As a result, the current paper describes the generation of the Saudi anti-human cancer plants database (SACPD). The database contains most of the reported information about the naturally growing Saudi anticancer plants. SACPD comprises the scientific and local names of 91 plant species that grow naturally in Saudi Arabia. These species belong to 38 different taxonomic families. In Addition, 18 species that represent16 family of medicinal plants and are intensively sold in the local markets in Saudi Arabia were added to the database. The website provides interesting details, including plant part containing the anticancer bioactive compounds, plants locations and cancer/cell type against which they exhibit their anticancer activity. Our survey revealed that breast, liver and leukemia were the most studied cancer cell lines in Saudi Arabia with percentages of 27%, 19% and 15%, respectively. The current SACPD represents a nucleus around which more development efforts can expand to accommodate all future submissions about new Saudi plant species with anticancer activities. SACPD will provide an excellent starting point for researchers and pharmaceutical companies who are interested in developing new anticancer drugs. SACPD is available online at https://teeqrani1.wixsite.com/sapd


2013 ◽  
Vol 8 (12) ◽  
pp. 1934578X1300801 ◽  
Author(s):  
Sumit S Chourasiya ◽  
Eppakayala Sreedhar ◽  
K. Suresh Babu ◽  
Nagula Shankaraiah ◽  
V. Lakshma Nayak ◽  
...  

Bioactivity guided investigation of the DCM: MeOH (1:1) extract from the rhizomes of Alpinia galanga led to the isolation of phenylpropanoids (1–9) and their structures were established by 1H NMR, 13C NMR, IR and LC-MS/MS. These compounds have been evaluated for their in vitro anticancer activity against the human cancer cell lines A549 (lung cancer), Colo-205 (colon cancer), A431 (skin cancer), NCI H460 (lung cancer), PC-3 (prostate cancer), and HT-29 (colon cancer). Compounds 4 and 9 showed potent anticancer activity (ranging from 1.3–19.7 μg/mL) against all the tested cancer cell lines. In addition, an asymmetric synthesis of acetoxychavicol acetate (1) and trans-p-coumaryl alcohol (4) has been accomplished in six steps starting from readily available p-hydroxybenzaldehyde for the first time. Grignard reaction and Sharpless kinetic resolution reactions were utilized as the key steps to install the basic core.


2010 ◽  
Vol 79 (9) ◽  
pp. 1261-1271 ◽  
Author(s):  
Cheng-Chih Hsieh ◽  
Yueh-Hsiung Kuo ◽  
Ching-Chuan Kuo ◽  
Li-Tzong Chen ◽  
Chun-Hei Antonio Cheung ◽  
...  

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Meghan A Morrissey ◽  
Adam P Williamson ◽  
Adriana M Steinbach ◽  
Edward W Roberts ◽  
Nadja Kern ◽  
...  

Chimeric antigen receptors (CARs) are synthetic receptors that reprogram T cells to kill cancer. The success of CAR-T cell therapies highlights the promise of programmed immunity and suggests that applying CAR strategies to other immune cell lineages may be beneficial. Here, we engineered a family of Chimeric Antigen Receptors for Phagocytosis (CAR-Ps) that direct macrophages to engulf specific targets, including cancer cells. CAR-Ps consist of an extracellular antibody fragment, which can be modified to direct CAR-P activity towards specific antigens. By screening a panel of engulfment receptor intracellular domains, we found that the cytosolic domains from Megf10 and FcRɣ robustly triggered engulfment independently of their native extracellular domain. We show that CAR-Ps drive specific engulfment of antigen-coated synthetic particles and whole human cancer cells. Addition of a tandem PI3K recruitment domain increased cancer cell engulfment. Finally, we show that CAR-P expressing murine macrophages reduce cancer cell number in co-culture by over 40%.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 849 ◽  
Author(s):  
Florence N. Mbaoji ◽  
Steven Behnisch-Cornwell ◽  
Adaobi C. Ezike ◽  
Chukwuemeka S. Nworu ◽  
Patrick J. Bednarski

In western Africa ethnomedicine, Lannea barteri Oliv. (Anacardiaceae) is believed to have activity against gastrointestinal, neurological and endocrine diseases. Previous studies on this plant have revealed antimicrobial, anticholinestrase, anticonvulsant, antioxidant and anti-inflammatory activities. However, the anticancer potential of L. barteri has not been studied to date. The aim of this study was to evaluate the anticancer potential of hot and cold extracts and silica gel column chromatographic fractions of L. barteri leaf and stem bark. The extracts and fractions were tested for anticancer activity by using the crystal violet cell proliferation assay on four adherent human carcinoma cell lines—5637 (bladder), KYSE 70 (oesophagus), SiSo (cervical) and HepG2 (hepatic). The inhibitory concentration (IC50) of fractions IH, 1I, 2E and 2F were: 3.75 ± 1.33, 3.88 ± 2.15, 0.53 ± 0.41, and 0.42 ± 0.45 µg/mL against KYSE 70 and 1.04 ± 0.94, 2.69 ± 1.17, 2.38 ± 3.64, 2.17 ± 1.92 µg/mL against SiSo cell lines respectively. Fraction 2E showed weak apoptotic activity at double the IC50 and some sign of cell cycle arrest in the G2/M phase. Thus, phytoconstituents of L. barteri leaf and stem bark can inhibit the proliferation of cancer cell lines indicating the presence of possible anticancer agents in this plant.


Endocrinology ◽  
2019 ◽  
Vol 160 (7) ◽  
pp. 1600-1612 ◽  
Author(s):  
Andrew V Schally ◽  
Xianyang Zhang ◽  
Renzhi Cai ◽  
Joshua M Hare ◽  
Riccarda Granata ◽  
...  

Abstract In this article, we briefly review the identification of GHRH, provide an abridged overview of GHRH antagonists, and focus on studies with GHRH agonists. Potent GHRH agonists of JI and MR class were synthesized and evaluated biologically. Besides the induction of the release of pituitary GH, GHRH analogs promote cell proliferation and exert stimulatory effects on various tissues, which express GHRH receptors (GHRH-Rs). A large body of work shows that GHRH agonists, such as MR-409, improve pancreatic β-cell proliferation and metabolic functions and facilitate engraftment of islets after transplantation in rodents. Accordingly, GHRH agonists offer a new therapeutic approach to treating diabetes. Various studies demonstrate that GHRH agonists promote repair of cardiac tissue, producing improvement of ejection fraction and reduction of infarct size in rats, reduction of infarct scar in swine, and attenuation of cardiac hypertrophy in mice, suggesting clinical applications. The presence of GHRH-Rs in ocular tissues and neuroprotective effects of GHRH analogs in experimental diabetic retinopathy indicates their possible therapeutic applications for eye diseases. Other effects of GHRH agonists, include acceleration of wound healing, activation of immune cells, and action on the central nervous system. As GHRH might function as a growth factor, we examined effects of GHRH agonists on tumors. In vitro, GHRH agonists stimulate growth of human cancer cells and upregulate GHRH-Rs. However, in vivo, GHRH agonists inhibit growth of human cancers xenografted into nude mice and downregulate pituitary and tumoral GHRH-Rs. Therapeutic applications of GHRH analogs are discussed. The development of GHRH analogs should lead to their clinical use.


Sign in / Sign up

Export Citation Format

Share Document