scholarly journals Adenovirus Vectors Target Several Cell Subtypes of Mammalian Inner Ear In Vivo

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yilai Shu ◽  
Yong Tao ◽  
Wenyan Li ◽  
Jun Shen ◽  
Zhengmin Wang ◽  
...  

Mammalian inner ear harbors diverse cell types that are essential for hearing and balance. Adenovirus is one of the major vectors to deliver genes into the inner ear for functional studies and hair cell regeneration. To identify adenovirus vectors that target specific cell subtypes in the inner ear, we studied three adenovirus vectors, carrying a reporter gene encoding green fluorescent protein (GFP) from two vendors or with a genome editing gene Cre recombinase (Cre), by injection into postnatal days 0 (P0) and 4 (P4) mouse cochlea through scala media by cochleostomy in vivo. We found three adenovirus vectors transduced mouse inner ear cells with different specificities and expression levels, depending on the type of adenoviral vectors and the age of mice. The most frequently targeted region was the cochlear sensory epithelium, including auditory hair cells and supporting cells. Adenovirus with GFP transduced utricular supporting cells as well. This study shows that adenovirus vectors are capable of efficiently and specifically transducing different cell types in the mammalian inner ear and provides useful tools to study inner ear gene function and to evaluate gene therapy to treat hearing loss and vestibular dysfunction.

2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 66
Author(s):  
Rashmita Pradhan ◽  
Phuong A. Ngo ◽  
Luz d. C. Martínez-Sánchez ◽  
Markus F. Neurath ◽  
Rocío López-Posadas

Rho proteins operate as key regulators of the cytoskeleton, cell morphology and trafficking. Acting as molecular switches, the function of Rho GTPases is determined by guanosine triphosphate (GTP)/guanosine diphosphate (GDP) exchange and their lipidation via prenylation, allowing their binding to cellular membranes and the interaction with downstream effector proteins in close proximity to the membrane. A plethora of in vitro studies demonstrate the indispensable function of Rho proteins for cytoskeleton dynamics within different cell types. However, only in the last decades we have got access to genetically modified mouse models to decipher the intricate regulation between members of the Rho family within specific cell types in the complex in vivo situation. Translationally, alterations of the expression and/or function of Rho GTPases have been associated with several pathological conditions, such as inflammation and cancer. In the context of the GI tract, the continuous crosstalk between the host and the intestinal microbiota requires a tight regulation of the complex interaction between cellular components within the intestinal tissue. Recent studies demonstrate that Rho GTPases play important roles for the maintenance of tissue homeostasis in the gut. We will summarize the current knowledge on Rho protein function within individual cell types in the intestinal mucosa in vivo, with special focus on intestinal epithelial cells and T cells.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii19-ii19
Author(s):  
Anca Mihalas ◽  
Heather Feldman ◽  
Anoop Patel ◽  
Patrick Paddison

Abstract Current standard of care therapy for glioblastoma (GBM) includes cytoreduction followed by ablative therapies that target rapidly dividing cell types. However, the presence of quiescent-like/G0 states, therefore, represents a natural reservoir of tumor cells that are resistant to current treatments. Quiescence or G0 phase is a reversible state of “stasis” cells enter in response to developmental or environmental cues. To gain insight into how glioblastoma cells might regulate G0-like states, we performed a genome-wide CRISPR-Cas9 screen in patient-derived GBM stem-like cells (GSCs) harboring a G0-reporter to identify genes that when inhibited trap GSCs in G0-like states. Among the top screen hits were members of the Tip60/KAT5 histone acetyltransferase complex, which targets both histones (e.g., H4) and non-histone proteins for acetylation. NuA4 functions as a transcriptional activator, whose activities are coordinated with MYC in certain contexts, and also participates in DNA double-strand break repair by facilitating chromatin opening. However, currently little is known about the roles for NuA4 complex in GBM biology. Through modeling KAT5 function in GSC in vitro cultures and in vivo tumors, we find that KAT5 inhibition causes cells to arrest in a G0-like state with high p27 levels, G1-phase DNA content, low protein synthesis rates, low rRNA rates, lower metabolic rate, suppression of cell cycle gene expression, and low histone H4 acetylation. Interestingly, partial inhibition of KAT5 activity slows highly aggressive tumor growth, while increasing p27hi H4-aclow populations. Remarkably, we that low grade gliomas have significantly higher H4-aclow subpopulations and generally lower H4-ac levels than aggressive grade IV tumors. Taken together, our results suggest that NuA4/KAT5 activity may play a key role in quiescence ingress/egress in glioma and that targeting its activity in high grade tumors may effectively “down grade” them, thus, increase patient survival.


2010 ◽  
Vol 298 (4) ◽  
pp. E807-E814 ◽  
Author(s):  
Lara R. Nyman ◽  
Eric Ford ◽  
Alvin C. Powers ◽  
David W. Piston

Pancreatic islets are highly vascularized and arranged so that regions containing β-cells are distinct from those containing other cell types. Although islet blood flow has been studied extensively, little is known about the dynamics of islet blood flow during hypoglycemia or hyperglycemia. To investigate changes in islet blood flow as a function of blood glucose level, we clamped blood glucose sequentially at hyperglycemic (∼300 mg/dl or 16.8 mM) and hypoglycemic (∼50 mg/dl or 2.8 mM) levels while simultaneously imaging intraislet blood flow in mouse models that express green fluorescent protein in the β-cells or yellow fluorescent protein in the α-cells. Using line scanning confocal microscopy, in vivo blood flow was assayed after intravenous injection of fluorescent dextran or sulforhodamine-labeled red blood cells. Regardless of the sequence of hypoglycemia and hyperglycemia, islet blood flow is faster during hyperglycemia, and apparent blood volume is greater during hyperglycemia than during hypoglycemia. However, there is no change in the order of perfusion of different islet endocrine cell types in hypoglycemia compared with hyperglycemia, with the islet core of β-cells usually perfused first. In contrast to the results in islets, there was no significant difference in flow rate in the exocrine pancreas during hyperglycemia compared with hypoglycemia. These results indicate that glucose differentially regulates blood flow in the pancreatic islet vasculature independently of blood flow in the rest of the pancreas.


2014 ◽  
Vol 369 (1657) ◽  
pp. 20130542 ◽  
Author(s):  
David-Emlyn Parfitt ◽  
Michael M. Shen

To date, many regulatory genes and signalling events coordinating mammalian development from blastocyst to gastrulation stages have been identified by mutational analyses and reverse-genetic approaches, typically on a gene-by-gene basis. More recent studies have applied bioinformatic approaches to generate regulatory network models of gene interactions on a genome-wide scale. Such models have provided insights into the gene networks regulating pluripotency in embryonic and epiblast stem cells, as well as cell-lineage determination in vivo . Here, we review how regulatory networks constructed for different stem cell types relate to corresponding networks in vivo and provide insights into understanding the molecular regulation of the blastocyst–gastrula transition.


2018 ◽  
Vol 116 (1) ◽  
pp. 303-312 ◽  
Author(s):  
Erol C. Bayraktar ◽  
Lou Baudrier ◽  
Ceren Özerdem ◽  
Caroline A. Lewis ◽  
Sze Ham Chan ◽  
...  

Mitochondria are metabolic organelles that are essential for mammalian life, but the dynamics of mitochondrial metabolism within mammalian tissues in vivo remains incompletely understood. While whole-tissue metabolite profiling has been useful for studying metabolism in vivo, such an approach lacks resolution at the cellular and subcellular level. In vivo methods for interrogating organellar metabolites in specific cell types within mammalian tissues have been limited. To address this, we built on prior work in which we exploited a mitochondrially localized 3XHA epitope tag (MITO-Tag) for the fast isolation of mitochondria from cultured cells to generate MITO-Tag Mice. Affording spatiotemporal control over MITO-Tag expression, these transgenic animals enable the rapid, cell-type-specific immunoisolation of mitochondria from tissues, which we verified using a combination of proteomic and metabolomic approaches. Using MITO-Tag Mice and targeted and untargeted metabolite profiling, we identified changes during fasted and refed conditions in a diverse array of mitochondrial metabolites in hepatocytes and found metabolites that behaved differently at the mitochondrial versus whole-tissue level. MITO-Tag Mice should have utility for studying mitochondrial physiology, and our strategy should be generally applicable for studying other mammalian organelles in specific cell types in vivo.


2018 ◽  
Author(s):  
Erol Can Bayraktar ◽  
Lou Baudrier ◽  
Ceren Özerdem ◽  
Caroline A. Lewis ◽  
Sze Ham Chan ◽  
...  

ABSTRACTMitochondria are metabolic organelles that are essential for mammalian life, but the dynamics of mitochondrial metabolism within mammalian tissues in vivo remains incompletely understood. While whole-tissue metabolite profiling has been useful for studying metabolism in vivo, such an approach lacks resolution at the cellular and subcellular level. In vivo methods for interrogating organellar metabolites in specific cell-types within mammalian tissues have been limited. To address this, we built on prior work in which we exploited a mitochondrially-localized 3XHA epitope-tag (“MITO-Tag”) for the fast isolation of mitochondria from cultured cells to now generate “MITO-Tag Mice.” Affording spatiotemporal control over MITO-Tag expression, these transgenic animals enable the rapid, cell-type-specific immunoisolation of mitochondria from tissues, which we verified using a combination of proteomic and metabolomic approaches. Using MITO-Tag Mice and targeted and untargeted metabolite profiling, we identified changes during fasted and refed conditions in a diverse array of mitochondrial metabolites in hepatocytes and found metabolites that behaved differently at the mitochondrial versus whole-tissue level. MITO-Tag Mice should have utility for studying mitochondrial physiology and our strategy should be generally applicable for studying other mammalian organelles in specific cell-types in vivo.


2021 ◽  
Author(s):  
Juan Jauregui-Lozano ◽  
Kimaya Bakhle ◽  
Vikki M. Weake

AbstractThe chromatin landscape defines cellular identity in multicellular organisms with unique patterns of DNA accessibility and histone marks decorating the genome of each cell type. Thus, profiling the chromatin state of different cell types in an intact organism under disease or physiological conditions can provide insight into how chromatin regulates cell homeostasisin vivo. To overcome the many challenges associated with characterizing chromatin state in specific cell types, we developed an improved approach to isolateDrosophilanuclei tagged with GFP expressed under Gal4/UAS control. Using this protocol, we profiled chromatin accessibility using Omni-ATAC, and examined the distribution of histone marks using ChIP-seq and CUT&Tag in adult photoreceptor neurons. We show that the chromatin landscape of photoreceptors reflects the transcriptional state of these cells, demonstrating the quality and reproducibility of our approach for profiling the transcriptome and epigenome of specific cell types inDrosophila.


2018 ◽  
Vol 98 (1) ◽  
pp. 391-418 ◽  
Author(s):  
Deniz Atasoy ◽  
Scott M. Sternson

Chemogenetic technologies enable selective pharmacological control of specific cell populations. An increasing number of approaches have been developed that modulate different signaling pathways. Selective pharmacological control over G protein-coupled receptor signaling, ion channel conductances, protein association, protein stability, and small molecule targeting allows modulation of cellular processes in distinct cell types. Here, we review these chemogenetic technologies and instances of their applications in complex tissues in vivo and ex vivo.


Development ◽  
1995 ◽  
Vol 121 (11) ◽  
pp. 3637-3650 ◽  
Author(s):  
C.P. Austin ◽  
D.E. Feldman ◽  
J.A. Ida ◽  
C.L. Cepko

The first cells generated during development of the vertebrate retina are the ganglion cells, the projection neurons of the retina. Although they are one of the most intensively studied cell types within the central nervous system, little is known of the mechanisms that determine ganglion cell fate. We demonstrate that ganglion cells are selected from a large group of competent progenitors that comprise the majority of the early embryonic retina and that differentiation within this group is regulated by Notch. Notch activity in vivo was diminished using antisense oligonucleotides or augmented using a retrovirally transduced constitutively active allele of Notch. The number of ganglion cells produced was inversely related to the level of Notch activity. In addition, the Notch ligand Delta inhibited retinal progenitors from differentiating as ganglion cells to the same degree as did activated Notch in an in vitro assay. These results suggest a conserved strategy for neurogenesis in the retina and describe a versatile in vitro and in vivo system with which to examine the action of the Notch pathway in a specific cell fate decision in a vertebrate.


Sign in / Sign up

Export Citation Format

Share Document