scholarly journals Numerical and Experimental Investigation on the Structural Behaviour of a Horizontal Stabilizer under Critical Aerodynamic Loading Conditions

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
R. Sepe ◽  
R. Citarella ◽  
A. De Luca ◽  
E. Armentani

The aim of the proposed research activity is to investigate the mechanical behaviour of a part of aerospace horizontal stabilizer, made of composite materials and undergoing static loads. The prototype design and manufacturing phases have been carried out in the framework of this research activity. The structural components of such stabilizer are made of composite sandwich panels (HTA 5131/RTM 6) with honeycomb core (HRH-10-1/8-4.0); the sandwich skins have been made by means of Resin Transfer Moulding (RTM) process. In order to assess the mechanical strength of this stabilizer, experimental tests have been performed. In particular, the most critical inflight recorded aerodynamic load has been experimentally reproduced and applied on the stabilizer. A numerical model, based on the Finite Element Method (FEM) and aimed at reducing the experimental effort, has been preliminarily developed to calibrate amplitude, direction, and distribution of an equivalent and simpler load vector to be used in the experimental test. The FEM analysis, performed by using NASTRAN code, has allowed modelling the skins of the composite sandwich plates by definition of material properties and stack orientation of each lamina, while the honeycomb core has been modelled by using an equivalent orthotropic plate. Numerical and experimental results have been compared and a good agreement has been achieved.

Drones ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 52
Author(s):  
Thomas Lee ◽  
Susan Mckeever ◽  
Jane Courtney

With the rise of Deep Learning approaches in computer vision applications, significant strides have been made towards vehicular autonomy. Research activity in autonomous drone navigation has increased rapidly in the past five years, and drones are moving fast towards the ultimate goal of near-complete autonomy. However, while much work in the area focuses on specific tasks in drone navigation, the contribution to the overall goal of autonomy is often not assessed, and a comprehensive overview is needed. In this work, a taxonomy of drone navigation autonomy is established by mapping the definitions of vehicular autonomy levels, as defined by the Society of Automotive Engineers, to specific drone tasks in order to create a clear definition of autonomy when applied to drones. A top–down examination of research work in the area is conducted, focusing on drone navigation tasks, in order to understand the extent of research activity in each area. Autonomy levels are cross-checked against the drone navigation tasks addressed in each work to provide a framework for understanding the trajectory of current research. This work serves as a guide to research in drone autonomy with a particular focus on Deep Learning-based solutions, indicating key works and areas of opportunity for development of this area in the future.


2015 ◽  
Vol 67 (1) ◽  
pp. 7-12
Author(s):  
Cosmin Mihai Miriţoiu

Abstract In this paper there is presented an experimental procedure used to determine the flexural rigidity for composite sandwich bars with polypropylene honeycomb core with various thickness values: 1, 1,5 and 2 cm. The composite bars will be reinforced with one layer of carbon fiber. The width value of the composite bars will be of 6 cm. In order to obtain the flexural rigidity the composite bars will be clamped at one end and left free at the other. An accelerometer will be placed at the free end used to record the free vibrations of these bars. The simplifying assumption of “bar” will be used in this research, so I have chosen several free lengths for the bars: 29, 32 and 35 cm. The eigenfrequency of the first eigenmode will be used to determine the flexural rigidity of the bars.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Łukasz Święch ◽  
Radosław Kołodziejczyk ◽  
Natalia Stącel

The work concerns the experimental analysis of the process of destruction of sandwich structures as a result of circumferential shearing. The aim of the research was to determine the differences that occur in the destruction mechanism of such structures depending on the thickness and material of the core used. Specimens with a Rohacell foam core and a honeycomb core were made for the purposes of the research. The specimen destruction process was carried out in a static loading test with the use of a system introducing circumferential shear stress. The analysis of the tests results was made based on the load-displacement curves, the maximum load, and the energy absorbed by individual specimens. The tests indicated significant differences in the destruction mechanism of specimens with varied core material. The specimen with the honeycomb core was characterized by greater stiffness, which caused the damage to occur locally in the area subjected to the pressure of the punch. In specimens with the foam core, due to the lower stiffness of that core, the skins of the structure were bent, which additionally transfers compressive and tensile loads. This led to a higher maximum force that the specimens obtained at the time of destruction and greater energy absorption.


2019 ◽  
Vol 209 ◽  
pp. 242-257 ◽  
Author(s):  
Felipe de Souza Eloy ◽  
Guilherme Ferreira Gomes ◽  
Antonio Carlos Ancelotti ◽  
Sebastião Simões da Cunha ◽  
Antonio José Faria Bombard ◽  
...  

2017 ◽  
Vol 12 (1) ◽  
pp. 88-105 ◽  
Author(s):  
Sünje Dallmeier-Tiessen ◽  
Varsha Khodiyar ◽  
Fiona Murphy ◽  
Amy Nurnberger ◽  
Lisa Raymond ◽  
...  

The data curation community has long encouraged researchers to document collected research data during active stages of the research workflow, to provide robust metadata earlier, and support research data publication and preservation. Data documentation with robust metadata is one of a number of steps in effective data publication. Data publication is the process of making digital research objects ‘FAIR’, i.e. findable, accessible, interoperable, and reusable; attributes increasingly expected by research communities, funders and society. Research data publishing workflows are the means to that end. Currently, however, much published research data remains inconsistently and inadequately documented by researchers. Documentation of data closer in time to data collection would help mitigate the high cost that repositories associate with the ingest process. More effective data publication and sharing should in principle result from early interactions between researchers and their selected data repository. This paper describes a short study undertaken by members of the Research Data Alliance (RDA) and World Data System (WDS) working group on Publishing Data Workflows. We present a collection of recent examples of data publication workflows that connect data repositories and publishing platforms with research activity ‘upstream’ of the ingest process. We re-articulate previous recommendations of the working group, to account for the varied upstream service components and platforms that support the flow of contextual and provenance information downstream. These workflows should be open and loosely coupled to support interoperability, including with preservation and publication environments. Our recommendations aim to stimulate further work on researchers’ views of data publishing and the extent to which available services and infrastructure facilitate the publication of FAIR data. We also aim to stimulate further dialogue about, and definition of, the roles and responsibilities of research data services and platform providers for the ‘FAIRness’ of research data publication workflows themselves.


2013 ◽  
Vol 554-557 ◽  
pp. 423-432 ◽  
Author(s):  
Patrick Böhler ◽  
Frank Härtel ◽  
Peter Middendorf

In several fields of engineering the use of carbon fibre reinforced material (CFRP) is increasing. Minimized weight due to CFRPs could lead to lower consumption of raw materials especially in the automotive area. The goal within the research project TC² is the decrease of costs and production time for composite materials. To achieve better performance to weight ratio and to get acceptable production conditions the draping of dry unidirectional textiles and a following RTM process is investigated. Due to the high degree of complexity of automotive structures the forming process is challenging. Gapping in the textile could appear at corners as well as wrinkling or flexion of the fibres. To be able to define the amount and direction of layers or patches it is necessary to know the limits of forming for unidirectional material and to be able to predict the behaviour of the textile during the forming process. For the definition of the process limits several draping strategies are performed on different corner blend geometries. The goal of that work is to define the critical gradient of the flange to get first failures such as wrinkling or gapping. It is also important to understand the influence of different draping strategies. Parallel to the experimental tests a mesoscopic simulation method using an approach with roving and sewing thread is developed and presented. It is able to predict the material behaviour in critical areas (gapping, wrinkling). Different Young’s moduli and failure criteria can be implemented for the two main directions as well as for the bending of the textile. A validation with the experimental results is performed with the aim to enable the prediction of the textile behaviour using simulation methods.


Sign in / Sign up

Export Citation Format

Share Document