scholarly journals Methodology for Thermal Behaviour Assessment of Homogeneous Façades in Heritage Buildings

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Enrique Gil ◽  
Carlos Lerma ◽  
Jose Vercher ◽  
Ángeles Mas

It is fundamental to study the thermal behaviour in all architectural constructions throughout their useful life, in order to detect early deterioration ensuring durability, in addition to achieving and maintaining the interior comfort with the minimum energy consumption possible. This research has developed a methodology to assess the thermal behaviour of façades in heritage buildings. This paper presents methodology validation and verification (V & V) through a laboratory experiment. Guidelines and conclusions are extracted with the employment of three techniques in this experiment (thermal sensors, thermal imaging camera, and 3D thermal simulation in finite element software). A small portion of a homogeneous façade has been reproduced with indoor and outdoor thermal conditions. A closed chamber was constructed with wood panels and thermal insulation, leaving only one face exposed to the outside conditions, with a heat source inside the chamber that induces a temperature gradient in the wall. With this methodology, it is possible to better understand the thermal behaviour of the façade and to detect possible damage with the calibration and comparison of the results obtained by the experimental and theoretical techniques. This methodology can be extrapolated to the analysis of the thermal behaviour of façades in heritage buildings, usually made up of homogeneous material.

2021 ◽  
Vol 11 (1) ◽  
pp. 39-45
Author(s):  
Yuri S. VYTCHIKOV ◽  
Mikhail E. SAPAREV ◽  
Vladislav A. GOLIKOV ◽  
Evgeniy G. SAFRONOV

The article presents a method for determining the minimum permissible value of the heat transfer resistance of the outer wall, at which the minimum energy consumption is achieved during the operation of buildings with variable thermal conditions. A review of the sources devoted to this problem showed the presence of high costs of thermal energy during the heating of premises. On the basis of studies of all components of energy consumption in the operation of premises with intermitt ent heating systems, the authors of the article propose a method for determining the minimum permissible resistance to heat transfer, which provides minimum energy consumption. According to the described method, the calculation was made for external walls made of various materials. The analysis of the obtained results showed that a signifi cant infl uence on the minimum permissible value of the heat transfer resistance is exerted by a complex of thermophysical values cρλ. The presented graphical dependence R0 усл on the complex cρλ allows the designer to rationally choose a wall material that provides a minimum of energy consumption during the operation of the building. In the context of rising energy tariff s, such optimization of thermal protection characteristics is especially important for country cott ages operated in intermitt ent heating conditions.


Author(s):  
C. Jothikumar ◽  
Revathi Venkataraman ◽  
T. Sai Raj ◽  
J. Selvin Paul Peter ◽  
T.Y.J. Nagamalleswari

Wireless sensor network is a wide network that works as a cutting edge model in industrial applications. The sensor application is mostly used for high security systems that provide safety support to the environment. The sensor system senses the physical phenomenon, processes the input signal and communicates with the base station through its neighbors. Energy is the most important criterion to support a live network for long hours. In the proposed system, the EUCOR (Efficient Unequal Clustering and Optimized Routing) protocol uses the objective function to identify the efficient cluster head with variable cluster size. The computation of the objective function deals with the ant colony approach for minimum energy consumption and the varying size of the cluster in each cycle is calculated based on the competition radius. The system prolongs the lifespan of the nodes by minimizing the utilization of energy in the transmission of packets in the networks when compared with the existing system.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1157
Author(s):  
Danka Labus Zlatanovic ◽  
Sebastian Balos ◽  
Jean Pierre Bergmann ◽  
Stefan Rasche ◽  
Milan Pecanac ◽  
...  

Friction stir spot welding is an emerging spot-welding technology that offers opportunities for joining a wide range of materials with minimum energy consumption. To increase productivity, the present work addresses production challenges and aims to find solutions for the lap-welding of multiple ultrathin sheets with maximum productivity. Two convex tools with different edge radii were used to weld four ultrathin sheets of AA5754-H111 alloy each with 0.3 mm thickness. To understand the influence of tool geometries and process parameters, coefficient of friction (CoF), microstructure and mechanical properties obtained with the Vickers microhardness test and the small punch test were analysed. A scanning acoustic microscope was used to assess weld quality. It was found that the increase of tool radius from 15 to 22.5 mm reduced the dwell time by a factor of three. Samples welded with a specific tool were seen to have no delamination and improved mechanical properties due to longer stirring time. The rotational speed was found to be the most influential parameter in governing the weld shape, CoF, microstructure, microhardness and weld efficiency. Low rotational speeds caused a 14.4% and 12.8% improvement in joint efficiency compared to high rotational speeds for both tools used in this investigation.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 70
Author(s):  
Vladimir Dotsenko ◽  
Roman Prokudin ◽  
Alexander Litvinenko

The article deals with the optimal control of the positional electric drive of the stator element of a segment-type wind turbine. The calculation options charts current in the assumption of the minimum energy consumption and the implementation of line chart current using the phenomenon of capacitor discharge. The analysis of the implementation is expressed in a jump-like change in current and a triangular graph of the speed change. This article deals with small capacity synchronous wind turbine generators with a segment type stator. These units have the possibility of intentionally changing the air gap between the rotor and stator. This allows: (1) Reduce the starting torque on the rotor shaft, which will allow the rotor to pick up at low wind speeds. (2) Equivalent to change of air gap in this case is change of excitation of synchronous generators. Thus, the purpose of the article is to consider a method of excitation of generators in a segmented design, by controlling the gap with the electric drive, while providing control should be carried out with minimal losses.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1313 ◽  
Author(s):  
Muhammad Awais ◽  
Nadeem Javaid ◽  
Amjad Rehman ◽  
Umar Qasim ◽  
Musaed Alhussein ◽  
...  

Nowadays, the Internet of Things enabled Underwater Wireless Sensor Network (IoT-UWSN) is suffering from serious performance restrictions, i.e., high End to End (E2E) delay, low energy efficiency, low data reliability, etc. The necessity of efficient, reliable, collision and interference-free communication has become a challenging task for the researchers. However, the minimum Energy Consumption (EC) and low E2E delay increase the performance of the IoT-UWSN. Therefore, in the current work, two proactive routing protocols are presented, namely: Bellman–Ford Shortest Path-based Routing (BF-SPR-Three) and Energy-efficient Path-based Void hole and Interference-free Routing (EP-VIR-Three). Then we formalized the aforementioned problems to accomplish the reliable data transmission in Underwater Wireless Sensor Network (UWSN). The main objectives of this paper include minimum EC, interference-free transmission, void hole avoidance and high Packet Delivery Ratio (PDR). Furthermore, the algorithms for the proposed routing protocols are presented. Feasible regions using linear programming are also computed for optimal EC and to enhance the network lifespan. Comparative analysis is also performed with state-of-the-art proactive routing protocols. In the end, extensive simulations have been performed to authenticate the performance of the proposed routing protocols. Results and discussion disclose that the proposed routing protocols outperformed the counterparts significantly.


2018 ◽  
Vol 38 (1) ◽  
pp. 73-89 ◽  
Author(s):  
Meibao Yao ◽  
Christoph H. Belke ◽  
Hutao Cui ◽  
Jamie Paik

Reconfigurability in versatile systems of modular robots is achieved by changing the morphology of the overall structure as well as by connecting and disconnecting modules. Recurrent connectivity changes can cause misalignment that leads to mechanical failure of the system. This paper presents a new approach to reconfiguration, inspired by the art of origami, that eliminates connectivity changes during transformation. Our method consists of an energy-optimal reconfiguration planner that generates an initial 2D assembly pattern and an actuation sequence of the modular units, both resulting in minimum energy consumption. The algorithmic framework includes two approaches, an automatic modeling algorithm as well as a heuristic algorithm. We further demonstrate the effectiveness of our method by applying the algorithms to Mori, a modular origami robot, in simulation. Our results show that the heuristic algorithm yields reconfiguration schemes with high quality, compared with the automatic modeling algorithm, simultaneously saving a considerable amount of computational time and effort.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5748
Author(s):  
Zhibo Zhang ◽  
Qing Chang ◽  
Na Zhao ◽  
Chen Li ◽  
Tianrun Li

The future development of communication systems will create a great demand for the internet of things (IOT), where the overall control of all IOT nodes will become an important problem. Considering the essential issues of miniaturization and energy conservation, in this study, a new data downlink system is designed in which all IOT nodes harvest energy first and then receive data. To avoid the unsolvable problem of pre-locating all positions of vast IOT nodes, a device called the power and data beacon (PDB) is proposed. This acts as a relay station for energy and data. In addition, we model future scenes in which a communication system is assisted by unmanned aerial vehicles (UAVs), large intelligent surfaces (LISs), and PDBs. In this paper, we propose and solve the problem of determining the optimal flight trajectory to reach the minimum energy consumption or minimum time consumption. Four future feasible scenes are analyzed and then the optimization problems are solved based on numerical algorithms. Simulation results show that there are significant performance improvements in energy/time with the deployment of LISs and reasonable UAV trajectory planning.


Sign in / Sign up

Export Citation Format

Share Document