scholarly journals Active Fragment ofVeronica ciliataFisch. Attenuates t-BHP-Induced Oxidative Stress Injury in HepG2 Cells through Antioxidant and Antiapoptosis Activities

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yiran Sun ◽  
Qiuxia Lu ◽  
Libo He ◽  
Yueyue Shu ◽  
Shiyan Zhang ◽  
...  

Excessive amounts of reactive oxygen species (ROS) in the body are a key factor in the development of hepatopathies such as hepatitis. The aim of this study was to assess the antioxidation effect in vitro and hepatoprotective activity of the active fragment ofVeronica ciliataFisch. (VCAF). Antioxidant assays (DPPH, superoxide, and hydroxyl radicals scavenging) were conducted, and hepatoprotective effects through the application oftert-butyl hydroperoxide- (t-BHP-) induced oxidative stress injury in HepG2 cells were evaluated. VCAF had high phenolic and flavonoid contents and strong antioxidant activity. From the perspective of hepatoprotection, VCAF exhibited a significant protective effect on t-BHP-induced HepG2 cell injury, as indicated by reductions in cytotoxicity and the levels of ROS, 8-hydroxydeoxyguanosine (8-OHdG), and protein carbonyls. Further study demonstrated that VCAF attenuated the apoptosis of t-BHP-treated HepG2 cells by suppressing the activation of caspase-3 and caspase-8. Moreover, it significantly decreased the levels of ALT and AST, increased the activities of acetyl cholinesterase (AChE), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), and increased total antioxidative capability (T-AOC). Collectively, we concluded that VCAF may be a considerable candidate for protecting against liver injury owing to its excellent antioxidant and antiapoptosis properties.

2016 ◽  
Vol 35 (12) ◽  
pp. 1252-1263 ◽  
Author(s):  
SS Palabiyik ◽  
E Karakus ◽  
Z Halici ◽  
E Cadirci ◽  
Y Bayir ◽  
...  

Acetaminophen (APAP) overdose could induce liver damage and lead to acute liver failure. The treatment of APAP overdoses could be improved by new therapeutic strategies. Thymus spp., which has many beneficial effects and has been used in folk medicine, is one such potential strategy. In the present study, the hepatoprotective activity of the main constituents of Thymus spp., carvacrol and thymol, were evaluated in light of APAP-induced hepatotoxicity. We hoped to understand the hepatoprotective mechanism of these agents on the antioxidant system and pro-inflammatory cytokines in vitro. Dose-dependent effects of thymol and carvacrol (25, 50, and 100 µM) were tested on cultured HepG2 cells. N-Acetylcysteine (NAC) was tested as positive control. We showed that APAP inhibited HepG2 cell growth by inducing inflammation and oxidative stress. Incubating APAP-exposed HepG2 cells with carvacrol and thymol for 24 h ameliorated this inflammation and oxidative stress. We also evaluated alanine transaminase and lactate dehydrogenase levels of HepG2 cells. We found that thymol and carvacrol protected against APAP-induced toxicity in HepG2 cells by increasing antioxidant activity and reducing pro-inflammatory cytokines, such as tumor necrosis factor α and interleukin 1β. Taking together high-dose thymol and carvacrol treatment has an effect close to NAC treatment in APAP toxicity, but thymol has better treatment effect than carvacrol.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xiao-hong Du ◽  
Qing-jun Chen ◽  
Jian-bo Song ◽  
Yan Xie ◽  
Yan Zhi ◽  
...  

Rhubarb-Aconite Decoction (RAD), a famous Chinese medicine prescription, has been widely used for treating intestinal injury. However, the effect of RAD on intestinal epithelial cells is unclear. The aim of this study was to investigate the effects of RAD drug-containing serum on the oxidative stress injury and inflammatory response induced by endotoxin (ET) in Caco-2 cells in vitro. Lipid peroxide malondialdehyde (MDA), lactate dehydrogenase (LDH), caspase-11, tumor necrosis factor-α(TNF-α), interleukin-3(IL-3), and cytokeratin (CK)18, adenosine triphosphate (ATP) activity, and intracellular free calcium ion levels were measured. The results showed that ET triggered the activation of caspase-11 and the massive release of TNF-α, increased the inhibitory rate of cell growth, MDA, and LDH expressions in Caco-2 cells. Moreover, RAD drug-containing serum could inhibit caspase-11 activation, decrease the release of TNF-α and IL-3, reduce intracellular free calcium ion, and enhance CK 18 expression and ATP activity. These novel findings demonstrated that ET-induced oxidative stress injury and inflammatory response of Caco-2 cells were improved by RAD drug-containing serum, indicating that RAD may be a good choice for the treatment of intestinal injury.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Chang Liu ◽  
Bozhao Li ◽  
Qi Yan ◽  
Shaopeng Niu ◽  
Yiding Zhao ◽  
...  

Ischemic heart disease (IHD) is a cardiovascular disease with high fatality rate, and its pathogenesis is closely related to oxidative stress. Reactive oxygen species (ROS) in oxidative stress can lead to myocardial ischemia (MI) injury in many ways. Therefore, the application of antioxidants may be an effective way to prevent IHD. In recent years, glutathione peroxidase 4 (GPx4) has received increasing attention due to its antioxidant effect. In a previous study, we used the new chimeric tRNAUTuT6 to express highly active recombinant human GPx4 (rhGPx4) in amber-less Escherichia coli. In this study, we established an isoproterenol- (ISO-) induced MI injury model in rats and an in vitro model to research the protective effect and mechanism of rhGPx4 on MI injury. The results showed that rhGPx4 could reduce the area of myocardial infarction and ameliorate the pathological injury of heart tissue, significantly reduce ISO-induced abnormalities on electrocardiogram (ECG) and cardiac serum biomarkers, protect mitochondrial function, and attenuate cardiac oxidative stress injury. In an in vitro model, the results also confirmed that rhGPx4 could inhibit ISO-induced oxidative stress injury and cardiomyocyte apoptosis. The mechanism of action of rhGPx4 involves not only the inhibition of lipid peroxidation by eliminating ROS but also keeping a normal level of endogenous antioxidant enzymes by eliminating ROS, thereby preventing oxidative stress injury in cardiomyocytes. Additionally, rhGPx4 could inhibit cardiomyocyte apoptosis through a mitochondria-dependent pathway. In short, rhGPx4, a recombinant antioxidant enzyme, can play an important role in the prevention of IHD and may have great potential for application.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Min Tang ◽  
Lei Zhang ◽  
Zheng Zhu ◽  
Ran Li ◽  
Shangqian Wang ◽  
...  

Background. Di-N-butylphthalate (DBP) is a kind of unique endocrine toxicity linked to hormonal disruptions that affects the male reproductive system and has given rise to more and more attention. However, the mechanism of DBP-induced testicular injury remains unclear. Here, the objective of this study was to investigate the potential molecular mechanism of miR-506-3p in DBP-induced rat testicular oxidative stress injury via ANXA5 (Annexin A5)/Nrf2/HO-1 signaling pathway. Methods. In vivo, a total of 40 adolescent male rats were treated from 2 weeks with 800 mg/kg/day of DBP in 1 mL/kg corn oil administered daily by oral gavage. Among them, some rats were also injected subcutaneously with 2 nmol agomir-506-3p and/or 10 nmol recombinant rat ANXA5. The pathomorphological changes of testicular tissue were assessed by histological examination, and the antioxidant factors were evaluated. Subsequently, ANXA5, Nrf2, and its dependent antioxidant enzymes, such as HO-1, NQO1, and GST, were detected by Western blotting or immunohistochemical staining. In vitro, TM3 cells (Leydig cells) were used to detect the cell activity by CCK-8 and the transfection in the DBP-treated group. Results. Differentially expressed miRNAs between the DBP-treated and normal rats were analyzed, and qRT-PCR showed miR-506-3p was highly expressed in testicular tissues of the DBP-treated rats. DBP-treated rats presented severe inflammatory infiltration, increased abnormal germ cells, and missed cell layers frequently existed in seminiferous tubules, resulted in oxidative stress and decreased testicular function. Meanwhile, upregulation of miR-506-3p aggravated the above changes. In addition, miR-506-3p directly bound to ANXA5, and overexpression of miR-506-3p could reduce the ANXA5 expression and also decrease the protein levels of Nrf2/HO-1 signaling pathway. Additionally, we found that recombinant rat ANXA5 reversed the DBP-treated testicular oxidative stress promoting injury of miR-506-3p in rats. In vivo results were reproduced in in vitro experiments. Conclusions. This study provided evidence that miR-506-3p could aggravate the DBP-treated testicular oxidative stress injury in vivo and in vitro by inhibiting ANXA5 expression and downregulating Nrf2/HO-1 signaling pathway, which might provide novel understanding in DBP-induced testicular injury therapy.


Author(s):  
Aiqing Deng ◽  
Limin Ma ◽  
Xueli Zhou ◽  
Xin Wang ◽  
Shouyan Wang ◽  
...  

Autophagy has been implicated in neurodegenerative diseases. Forkhead box O3 (FoxO3) transcription factors promote autophagy in heart and inhibit oxidative damage. Here we investigate the role of FoxO3 transcription factors in regulating autophagy after oxidative stress injury in immortalized mouse hippocampal cell line (HT22). The present study confirms that hydrogen peroxide (H2O2) injury could induce autophagy and FoxO3 activation in HT22 cells. In addition, overexpression of FoxO3 enhanced H2O2-induced autophagy activation and suppressed neuronal cell damage, while knockdown of FoxO3 reduced H2O2-induced autophagy activation and exacerbated neuronal cell injury. Inhibition of autophagy by 3-Methyladenine (3-MA) resulted in reduced cell viability, increased production of reactive oxygen species (ROS), promoted nuclear condensation and decreased expression of antiapoptotic and autophagy-related proteins, indicating that autophagy may have protective effects on H2O2-induced injury in HT22 cells. Moreover, overexpression of FoxO3 prevented exacerbation of brain damage induced by 3-MA. Taken together, these results show that activation of FoxO3 could induce autophagy and inhibit H2O2-induced damage in HT22 cells. Our study demonstrates the critical role of FoxO3 in regulating autophagy in brain.


2017 ◽  
Vol 31 (5) ◽  
pp. 1055-1063 ◽  
Author(s):  
Denitsa Aluani ◽  
Virginia Tzankova ◽  
Yordan Yordanov ◽  
Magdalena Kondeva-Burdina ◽  
Krassimira Yoncheva

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Cao-Sang Truong ◽  
Eunhui Seo ◽  
Hee-Sook Jun

Accumulation of advanced glycation end products (AGEs) in the body has been implicated in the pathogenesis of metabolic conditions, such as diabetes mellitus. Methylglyoxal (MGO), a major precursor of AGEs, has been reported to induce insulin resistance in both in vitro and in vivo studies. Psoralea corylifolia seeds (PCS) have been used as a traditional medicine for several diseases, but their potential application in treating insulin resistance has not yet been evaluated. This study is aimed at investigating whether PCS extract could attenuate insulin resistance induced by MGO. Male C57BL/6N mice (6 weeks old) were administered 1% MGO in their drinking water for 18 weeks, and the PCS extract (200 or 500 mg/kg) was orally administered daily from the first day of the MGO administration. We observed that both 200 and 500 mg/kg PCS extract treatment significantly improved glucose tolerance and insulin sensitivity and markedly restored p-Akt and p-IRS1/2 expression in the livers of the MGO-administered mice. Additionally, the PCS extract significantly increased the phosphorylation of Akt and IRS-1/2 and glucose uptake in MGO-treated HepG2 cells. Further studies showed that the PCS extract inhibited MGO-induced AGE formation in the HepG2 cells and in the sera of MGO-administered mice. PCS extract also increased the expression of glyoxalase 1 (GLO1) in the liver tissue of MGO-administered mice. The PCS extract significantly decreased the phosphorylation of ERK, p38, and NF-κB and suppressed the mRNA expression of proinflammatory molecules including TNF-α and IL-1β and iNOS in MGO-administered mice. Additionally, we demonstrated that the PCS extract attenuated oxidative stress, as evidenced by the reduced ROS production in the MGO-treated cells and the enhanced expression of antioxidant enzymes in the liver of MGO-administered mice. Thus, PCS extract ameliorated the MGO-induced insulin resistance in HepG2 cells and in mice by reducing oxidative stress via the inhibition of AGE formation. These findings suggest the potential of PCS extract as a candidate for the prevention and treatment of insulin resistance.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhang Yifan ◽  
Ning Benxiang ◽  
Xu Zheng ◽  
Xu Luwei ◽  
Zhou Liuhua ◽  
...  

Objective. To investigate the role of inflammatory reactions and oxidative stress injury in the mechanisms of ceftriaxone calcium crystal-induced acute kidney injury (AKI) both in vivo and in vitro. Methods. Male Sprague Dawley rats were randomly divided into five groups of ten each according to different concentrations of ceftriaxone and calcium. Based on the levels of serum creatinine (Scr) and blood urea nitrogen (BUN), the AKI group was chosen for the subsequent experiments. Kidney histological examination and immunohistochemistry were performed. The expression of NLRP3 and IL-1β protein and the concentrations of oxidative stress markers such as ROS, MDA, and H2O2 in kidney tissues were estimated. In parallel, HK-2 human renal proximal tubule cells were exposed to ceftriaxone calcium crystals. The mRNA expression levels of NLRP3 and IL-1β and the concentrations of oxidative stress markers were evaluated. Finally, cell viability and rat survival were also assessed. Results. The results showed that significantly increased Scr and BUN levels, consistent with morphological changes and kidney stones, were found in the rats that received the highest concentration of ceftriaxone (1000 mg/kg) combined with calcium (800 mg/kg). The activation of the NLRP3 inflammasome axis and the marked elevation of MDA, H2O2, and ROS levels were observed both in vivo and in vitro. High expression of Nrf2, HO-1, and NQO1 was also documented. In addition, cell apoptosis and rat mortality were promoted by ceftriaxone calcium crystals. Conclusions. Notably, we found that ceftriaxone-induced urolithiasis was associated with a high risk of AKI and NLRP3-mediated inflammasome and oxidative stress injury were of major importance in the pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document