scholarly journals TheuS8,uS4,eS31, anduL14Ribosomal Protein Genes Are Dysregulated in Nasopharyngeal Carcinoma Cell Lines

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Edmund Ui-Hang Sim ◽  
Kher-Lee Ng ◽  
Choon-Weng Lee ◽  
Kumaran Narayanan

The association of ribosomal proteins with carcinogenesis of nasopharyngeal carcinoma (NPC) has been established in a limited subset of ribosomal protein genes. To date, three ribosomal protein genes,eL27 (L27),eL41 (L41), andeL43 (L37a), have been found to be differentially expressed in cell lines derived from NPC tumors. This raises the possibility of more ribosomal protein genes that could be associated with NPC. In this study, we investigated the expression profiles of eight ribosomal protein genes,uS8 (S8), uS4 (S9), eS31 (S27a), eL6 (L6), eL18 (L18), uL14 (L23), eL24 (L24), andeL30 (L30), in six NPC-derived cell lines(HONE-1, SUNE1, HK1, TW01, TW04, and C666-1). Their expression levels were compared with that of a nonmalignant nasopharyngeal epithelial cell line (NP69) using quantitative real-time PCR (RT-qPCR) assay. Of the eight genes studied, the expressions of four ribosomal protein genesuS8 (S8), uS4 (S9), eS31 (S27a),anduL14 (L23)were found to be significantly downregulated in NPC cell lines relative to NP69. Our findings provide novel empirical evidence of these four ribosomal protein genes as NPC-associated genetic factors and reinforce the relevance of ribosomal proteins in the carcinogenesis of nasopharyngeal cancer.

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Edmund Ui-Hang Sim ◽  
Stella Li-Li Chan ◽  
Kher-Lee Ng ◽  
Choon-Weng Lee ◽  
Kumaran Narayanan

Apart from their canonical role in ribosome biogenesis, there is increasing evidence of ribosomal protein genes’ involvement in various cancers. A previous study by us revealed significant differential expression of three ribosomal protein genes (RPeL27, RPeL41, and RPeL43) between cell lines derived from tumor and normal nasopharyngeal epithelium. However, the results therein were based on a semiquantitative assay, thus preliminary in nature. Herein, we provide findings of a deeper analysis of these three genes in the context to nasopharyngeal carcinoma (NPC) tumorigenesis. Their expression patterns were analyzed in a more quantitative manner at transcript level. Their protein expression levels were also investigated. We showed results that are contrary to previous report. Rather than downregulation, these genes were significantly overexpressed in NPC cell lines compared to normal control at both transcript and protein levels. Nevertheless, their association with NPC has been established. Immunoprecipitation pulldown assays indicate the plausible interaction of either RPeL27 or RPeL43 with POTEE/TUBA1A and ACTB/ACTBL2 complexes. In addition, RPeL43 is shown to bind with MRAS and EIF2S1 proteins in a NPC cell line (HK1). Our findings support RPeL27, RPeL41, and RPeL43 as potential markers of NPC and provide insights into the interaction targets of RPeL27 and RPeL43 proteins.


2009 ◽  
Vol 36 (10) ◽  
pp. 1319-1326 ◽  
Author(s):  
Shuang-Xiang TAN ◽  
Rui-Cheng HU ◽  
Ai-Guo DAI ◽  
Cen-E TANG ◽  
Hong YI ◽  
...  

1983 ◽  
Vol 3 (3) ◽  
pp. 457-465
Author(s):  
C H Kim ◽  
J R Warner

In Saccharomyces cerevisiae the synthesis of ribosomal proteins declines temporarily after a culture has been subjected to a mild temperature shock, i.e., a shift from 23 to 36 degrees C, each of which support growth. Using cloned genes for several S. cerevisiae ribosomal proteins, we found that the changes in the synthesis of ribosomal proteins parallel the changes in the concentration of mRNA of each. The disappearance and reappearance of the mRNA is due to a brief but severe inhibition of the transcription of each of the ribosomal protein genes, although the total transcription of mRNA in the cells is relatively unaffected by the temperature shock. The precisely coordinated response of these genes, which are scattered throughout the genome, suggests that either they or the enzyme which transcribes them has unique properties. In certain S. cerevisiae mutants, the synthesis of ribosomal proteins never recovers from a temperature shift. Yet both the decline and the resumption of transcription of these genes during the 30 min after the temperature shift are indistinguishable from those in wild-type cells. The failure of the mutant cells to grow at the restrictive temperature appears to be due to their inability to process the RNA transcribed from genes which have introns (Rosbash et al., Cell 24:679-686, 1981), a large proportion of which appear to be ribosomal protein genes.


Genetics ◽  
1992 ◽  
Vol 132 (2) ◽  
pp. 375-386 ◽  
Author(s):  
A Vincent ◽  
S W Liebman

Abstract The accurate synthesis of proteins is crucial to the existence of a cell. In yeast, several genes that affect the fidelity of translation have been identified (e.g., omnipotent suppressors, antisuppressors and allosuppressors). We have found that the dominant omnipotent suppressor SUP46 encodes the yeast ribosomal protein S13. S13 is encoded by two similar genes, but only the sup46 copy of the gene is able to fully complement the recessive phenotypes of SUP46 mutations. Both copies of the S13 genes contain introns. Unlike the introns of other duplicated ribosomal protein genes which are highly diverged, the duplicated S13 genes have two nearly identical DNA sequences of 25 and 31 bp in length within their introns. The SUP46 protein has significant homology to the S4 ribosomal protein in prokaryotic-type ribosomes. S4 is encoded by one of the ram (ribosomal ambiguity) genes in Escherichia coli which are the functional equivalent of omnipotent suppressors in yeast. Thus, SUP46 and S4 demonstrate functional as well as sequence conservation between prokaryotic and eukaryotic ribosomal proteins. SUP46 and S4 are most similar in their central amino acid sequences. Interestingly, the alterations resulting from the SUP46 mutations and the segment of the S4 protein involved in binding to the 16S rRNA are within this most conserved region.


2020 ◽  
Vol 21 (4) ◽  
pp. 1230
Author(s):  
Gangqiao Kuang ◽  
Wenjing Tao ◽  
Shuqing Zheng ◽  
Xiaoshuang Wang ◽  
Deshou Wang

Ribosomal proteins (RPs) are indispensable in ribosome biogenesis and protein synthesis, and play a crucial role in diverse developmental processes. In the present study, we carried out a comprehensive analysis of RPs in chordates and examined the expression profiles of the complete set of 92 cytoplasmic RP genes in Nile tilapia. The RP genes were randomly distributed throughout the tilapia genome. Phylogenetic and syntenic analyses revealed the existence of duplicated RP genes from 2R (RPL3, RPL7, RPL22 and RPS27) and 3R (RPL5, RPL19, RPL22, RPL41, RPLP2, RPS17, RPS19 and RPS27) in tilapia and even more from 4R in common carp and Atlantic salmon. The RP genes were found to be expressed in all tissues examined, but their expression levels differed among different tissues. Gonadal transcriptome analysis revealed that almost all RP genes were highly expressed, and their expression levels were highly variable between ovaries and testes at different developmental stages in tilapia. No sex- and stage-specific RP genes were found. Eleven RP genes displayed sexually dimorphic expression with nine higher in XY gonad and two higher in XX gonad at all stages examined, which were proved to be phenotypic sex dependent. Quantitative real-time PCR and immunohistochemistry ofRPL5b and RPL24 were performed to validate the transcriptome data. The genomic resources and expression data obtained in this study will contribute to a better understanding of RPs evolution and functions in chordates.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1170-1170
Author(s):  
Alison M. Taylor ◽  
Jessica M. Humphries ◽  
Richard M. White ◽  
Ryan D. Murphey ◽  
Caroline E. Burns ◽  
...  

Abstract Abstract 1170 Diamond Blackfan anemia (DBA) is a rare congenital disease characterized by red cell aplasia and craniofacial abnormalities. Ribosomal protein genes are often mutated in patients with this disease, but the mechanism of action is still being investigated. To elucidate the effect of mutations in ribosomal proteins, we are studying a zebrafish rps29 mutant with hematopoietic and endothelial defects. Hematopoietic stem cells (HSCs) in rps29-/- embryos are significantly decreased, as assayed by runx1 and cmyb expression. Although the aorta and posterior cardinal vein form in the mutant, intersomitic vessel formation is affected. To test whether decreased p53 levels can rescue these defects, we crossed fish with mutated p53 into the rps29 background. In rps29-/-;p53-/- embryos, the vascular and HSC phenotypes are rescued, demonstrating that p53 may be required for these effects of rps29 knockdown. We performed a microarray comparing rps29-/- embryos and their siblings to identify genes that are differentially expressed in the mutant. Using gene set enrichment analysis (GSEA), we determined that the list of genes up-regulated in the rps29 mutant is enriched for genes up-regulated by p53 in response to irradiation. Many of the genes identified have known roles in apoptosis and stress response. We have also identified genes whose expression correlates with the number of wildtype copies of rps29. Orthopedia homolog a (otpa), which is specifically expressed in forebrain and hindbrain tissues at 24 hours post fertilization (hpf), is decreased in heterozygous siblings and further decreased in homozygous siblings. In addition, p53 knockdown partially increases otpa levels in the mutant. These data support a model where p53 activation is one of the critical downstream mediators of rps29 knockdown in several tissues, but the mechanism of tissue specificity remains unclear. The otpa phenotype suggests that regulation of some genes is dependent on rps29 levels. The zebrafish rps29 mutant will be a useful model for understanding how a decrease in ribosomal protein levels can cause specific defects in hematopoietic and neural tissues. Disclosures: Zon: FATE, Inc.: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; Stemgent: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


2011 ◽  
Vol 29 (2) ◽  
pp. 721-728 ◽  
Author(s):  
Lin Qi ◽  
Ping Wu ◽  
Xin Zhang ◽  
Yuanzheng Qiu ◽  
Weihong Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document