scholarly journals Evaluation of Anti-Inflammatory Properties of Isoorientin Isolated from Tubers of Pueraria tuberosa

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Kotha Anilkumar ◽  
Gorla V. Reddy ◽  
Rajaram Azad ◽  
Nagendra Sastry Yarla ◽  
Gangappa Dharmapuri ◽  
...  

Inflammation is the major causative factor of different diseases such as cardiovascular disease, diabetes, obesity, osteoporosis, rheumatoid arthritis, inflammatory bowel disease, and cancer. Anti-inflammatory drugs are often the first step of treatment in many of these diseases. The present study is aimed at evaluating the anti-inflammatory properties of isoorientin, a selective cyclooxygenase-2 (COX-2) inhibitor isolated from the tubers of Pueraria tuberosa, in vitro on mouse macrophage cell line (RAW 264.7) and in vivo on mouse paw edema and air pouch models of inflammation. Isoorientin reduced inflammation in RAW 264.7 cell line in vitro and carrageenan induced inflammatory animal model systems in vivo. Cellular infiltration into pouch tissue was reduced in isoorientin treated mice compared to carrageenan treated mice. Isoorientin treated RAW 264.7 cells and animals showed reduced expression of inflammatory proteins like COX-2, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), 5-lipoxygenase (5-LOX), and interleukin 1-β (IL-1-β) both in vitro and in vivo. The antioxidant enzyme levels of catalase and GST were markedly increased in isoorientin treated mice compared to carrageenan treated mice. These results suggest that isoorientin, a selective inhibitor of COX-2, not only exerts anti-inflammatory effects in LPS induced RAW cells and carrageenan induced inflammatory model systems but also exhibits potent antioxidant properties.

2020 ◽  
Vol 23 (1) ◽  
Author(s):  
Lei Wang ◽  
You-Jin Jeon ◽  
Jae-Il Kim

Abstract Background Inflammation plays a crucial role in the pathogenesis of many diseases such as arthritis and atherosclerosis. In the present study, we evaluated anti-inflammatory activity of sterol-rich fraction prepared from Spirogyra sp., a freshwater green alga, in an effort to find bioactive extracts derived from natural sources. Methods The sterol content of ethanol extract of Spirogyra sp. (SPE) was enriched by fractionation with hexane (SPEH), resulting 6.7 times higher than SPE. Using this fraction, the in vitro and in vivo anti-inflammatory activities were evaluated in lipopolysaccharides (LPS)-stimulated RAW 264.7 cells and zebrafish. Results SPEH effectively and dose-dependently decreased the production of nitric oxide (NO) and prostaglandin E2 (PGE2). SPEH suppressed the production of pro-inflammatory cytokines including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-1β through downregulating nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW 264.7 cells without cytotoxicity. The in vivo test results indicated that SPEH significantly and dose-dependently reduced reactive oxygen species (ROS) generation, cell death, and NO production in LPS-stimulated zebrafish. Conclusions These results demonstrate that SPEH possesses strong in vitro and in vivo anti-inflammatory activities and has the potential to be used as healthcare or pharmaceutical material for the treatment of inflammatory diseases.


2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Ji Young Cha ◽  
Ji Yun Jung ◽  
Jae Yup Jung ◽  
Jong Rok Lee ◽  
Il Je Cho ◽  
...  

Pyungwi-san (PWS) is a traditional basic herbal formula. We investigated the effects of PWS on induction of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), pro-inflammatory cytokines (interleukin-6 (IL-6) and tumor necrosis factor-α(TNF-α)) and nuclear factor-kappa B (NF-κB) as well as mitogen-activated protein kinases (MAPKs) in lipopolysaccharide-(LPS-) induced Raw 264.7 cells and on paw edema in rats. Treatment with PWS (0.5, 0.75, and 1 mg/mL) resulted in inhibited levels of expression of LPS-induced COX-2, iNOS, NF-κB, and MAPKs as well as production of prostaglandin E2(PGE2), nitric oxide (NO), IL-6, and TNF-αinduced by LPS. Our results demonstrate that PWS possesses anti-inflammatory activities via decreasing production of pro-inflammatory mediators through suppression of the signaling pathways of NF-κB and MAPKs in LPS-induced macrophage cells. More importantly, results of the carrageenan-(CA-) induced paw edema demonstrate an anti-edema effect of PWS. In addition, it is considered that PWS also inhibits the acute edematous inflammations through suppression of mast cell degranulations and inflammatory mediators, including COX-2, iNOS and TNF-α. Thus, our findings may provide scientific evidence to explain the anti-inflammatory properties of PWSin vitroandin vivo.


Marine Drugs ◽  
2018 ◽  
Vol 16 (10) ◽  
pp. 378 ◽  
Author(s):  
Azahara Rodríguez-Luna ◽  
Javier Ávila-Román ◽  
María González-Rodríguez ◽  
María Cózar ◽  
Antonio Rabasco ◽  
...  

Microalgae represent a source of bio-active compounds such as carotenoids with potent anti-inflammatory and antioxidant properties. We aimed to investigate the effects of fucoxanthin (FX) in both in vitro and in vivo skin models. Firstly, its anti-inflammatory activity was evaluated in LPS-stimulated THP-1 macrophages and TNF-α-stimulated HaCaT keratinocytes, and its antioxidant activity in UVB-irradiated HaCaT cells. Next, in vitro and ex vivo permeation studies were developed to determine the most suitable formulation for in vivo FX topical application. Then, we evaluated the effects of a FX-containing cream on TPA-induced epidermal hyperplasia in mice, as well as on UVB-induced acute erythema in hairless mice. Our results confirmed the in vitro reduction of TNF-α, IL-6, ROS and LDH production. Since the permeation results showed that cream was the most favourable vehicle, FX-cream was elaborated. This formulation effectively ameliorated TPA-induced hyperplasia, by reducing skin edema, epidermal thickness, MPO activity and COX-2 expression. Moreover, FX-cream reduced UVB-induced erythema through down-regulation of COX-2 and iNOS as well as up-regulation of HO-1 protein via Nrf-2 pathway. In conclusion, FX, administered in a topical formulation, could be a novel natural adjuvant for preventing exacerbations associated with skin inflammatory pathologies as well as protecting skin against UV radiation.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Jin Mi Chun ◽  
Hyo Seon Kim ◽  
A Yeong Lee ◽  
Seung-Hyung Kim ◽  
Ho Kyoung Kim

Saposhnikovia divaricataSchischkin has been used in traditional medicine to treat pain, inflammation, and arthritis. The aim of this study was to investigate the anti-inflammatory and antiosteoarthritis activities ofSaposhnikovia divaricataextract (SDE). The anti-inflammatory effect of SDE was evaluatedin vitroin lipopolysaccharide- (LPS-) treated RAW 264.7 cells. The antiosteoarthritic effect of SDE was investigated in anin vivorat model of monosodium iodoacetate- (MIA-) induced osteoarthritis (OA) in which rats were treated orally with SDE (200 mg/kg) for 28 days. The effects of SDE were assessedin vivoby histopathological analysis and by measuring weight-bearing distribution, cytokine serum levels, and joint tissue inflammation-related gene expression. SDE showed anti-inflammatory activity by inhibiting the production of nitric oxide (NO), prostaglandin E2(PGE2), tumor necrosis factor-α(TNF-α), and interleukin-6 (IL-6) in LPS-induced RAW 264.7 cells. In addition, SDE promoted recovery of hind limb weight-bearing, inhibited the production of proinflammatory cytokines and mediators, and protected cartilage and subchondral bone tissue in the OA rat model. Therefore, SDE is a potential therapeutic agent for OA and/or associated symptoms.


2021 ◽  
Vol 22 (15) ◽  
pp. 8158
Author(s):  
Fatin Jannus ◽  
Marta Medina-O’Donnell ◽  
Veronika E. Neubrand ◽  
Milagros Marín ◽  
Maria J. Saez-Lara ◽  
...  

Recent evidence has shown that inflammation can contribute to all tumorigenic states. We have investigated the anti-inflammatory effects of a diamine-PEGylated derivative of oleanolic acid (OADP), in vitro and in vivo with inflammation models. In addition, we have determined the sub-cytotoxic concentrations for anti-inflammatory assays of OADP in RAW 264.7 cells. The inflammatory process began with incubation with lipopolysaccharide (LPS). Nitric oxide production levels were also determined, exceeding 75% inhibition of NO for a concentration of 1 µg/mL of OADP. Cell-cycle analysis showed a reversal of the arrest in the G0/G1 phase in LPS-stimulated RAW 264.7 cells. Furthermore, through Western blot analysis, we have determined the probable molecular mechanism activated by OADP; the inhibition of the expression of cytokines such as TNF-α, IL-1β, iNOS, and COX-2; and the blocking of p-IκBα production in LPS-stimulated RAW 264.7 cells. Finally, we have analyzed the anti-inflammatory action of OADP in a mouse acute ear edema, in male BL/6J mice treated with OADP and tetradecanoyl phorbol acetate (TPA). Treatment with OADP induced greater suppression of edema and decreased the ear thickness 14% more than diclofenac. The development of new derivatives such as OADP with powerful anti-inflammatory effects could represent an effective therapeutic strategy against inflammation and tumorigenic processes.


Author(s):  
Laís Folquitto ◽  
Thiago de Souza ◽  
Jaqueline Januario ◽  
Isadora Nascimento ◽  
Brenda Brandão ◽  
...  

Considering the promising antitumor effects of compounds with dual anti-inflammatory and antiproliferative activities, thus benzophenones analogs (2-7) were evaluated on in vivo antiinflammatory assay and molecular docking analysis. Those with the best molecular docking results were in vitro evaluated on cyclooxygenase (COX) enzymes and tested regarding antiproliferative activity. All derivatives displayed in vivo anti-inflammatory activity. Among them, the substances 2’-hydroxy-4’-benzoylphenyl-β-D-glucopyranoside (4), 4-hydroxy-4’-methoxybenzophenone (5) and 4’-(4’’-methoxybenzoyl)phenyl-β-D-glucopyranoside (7) showed the best values of Glide Score in COX-2 docking evaluation and 4 and 5 selectively inhibited COX-2 and COX-1 in vitro enzymatic assay, respectively. Thus, 4 and 5 were tested against breast cancer (MCF-7, MDA‑MB-231, Hs578T) and non-small-cell-lung cancer (A549) cell lines. The estrogen-positive MCF-7 cell line was more responsive compared to other tested cell lines. They induced cell cycle arrest at G1/S transition in MCF-7 cell line once there was an increase in G0/G1 population with concomitant reduction of S population. The antiproliferative activity of these substances on MCF-7 was associated with their ability to inhibit cyclin E expression, a critical regulator of G1/S transition. Taken together, the data indicate that 4 and 5 have dual anti-inflammatory and antiproliferative activities and support further studies to evaluate their antitumor potential.


Author(s):  
Robina Antony ◽  
Jijin Raveendran ◽  
Prabath Gopalakrishnan Biju

Background: The management of acute inflammation, which arises from complex biological responses to harmful stimuli, is an important determinant in recovery of the system from an otherwise detrimental outcome such as septicemia. However, the side effects and limitations of current therapeutics necessitate the development of newer and safer alternatives. Mollugo cerviana is a common medicinal herb of the Indian subcontinent and has been traditionally used for its fever mitigating, anti-microbial and hepatoprotective action. We have already reported the rich presence of radical scavenging phytochemicals in the plant extracts and their strong antioxidant properties. Objective: In the present study, we have evaluated the anti-inflammatory effects of methanolic extract (ME) of the areal parts of M. cerviana in a lipopolysaccharide (LPS)-induced acute inflammatory cell culture model. Method: RAW 264.7 mouse macrophages cell were stimulated by the bacterial endotoxin LPS at a concentration of 1 µg/mL. Cytotoxicity and anti-inflammatory potential of ME were carried out. Results: M. cerviana extract concentration up to 150 µg/ml was found to be non-toxic to cells (MTT and NRU assay). LPS induces acute inflammation by binding to TLR-4 receptors, initiating downstream signalling cascade that result in pro-inflammatory cytokine secretion. Extract treatment at 100 µg/ml suppressed LPS-induced gene expression (qPCR) and secretion (ELISA) of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, and the chemokine CCL2, indicating a dampening of the acute inflammatory cascade. LPS-induced elevation of ROS level (DCFDA method) was significant reduced by extract treatment. Nitric oxide production, as indicated by nitrite level, was significantly reduced post extract treatment. Conclusion: From this study, it is demonstrated that M. cerviana methanolic extract has potent anti-inflammatory effect in the in vitro acute inflammation model of LPS-stimulated RAW 264.7 cells. There is not reported study so far on the anti-inflammatory properties of M. cerviana in an LPS-induced acute inflammatory model which closely mimics a human bacteremia response. Hence, this study highlights the therapeutic potential of this extract as a source of anti-inflammatory lead molecules.


Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 300
Author(s):  
Moo Rim Kang ◽  
Sun Ah Jo ◽  
Hyunju Lee ◽  
Yeo Dae Yoon ◽  
Joo-Hee Kwon ◽  
...  

Scytonemin is a yellow-green ultraviolet sunscreen pigment present in different genera of aquatic and terrestrial blue-green algae, including marine cyanobacteria. In the present study, the anti-inflammatory activities of scytonemin were evaluated in vitro and in vivo. Topical application of scytonemin inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear swelling in BALB/c mice. The expression of tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) was also suppressed by scytonemin treatment in the TPA-treated ear of BALB/c mice. In addition, scytonemin inhibited lipopolysaccharide (LPS)-induced production of TNF-α and nitric oxide (NO) in RAW 264.7 cells, a murine macrophage-like cell line, and the mRNA expressions of TNF-α and iNOS were also suppressed by scytonemin in LPS-stimulated RAW 264.7 cells. Further study demonstrated that LPS-induced NF-κB activity was significantly suppressed by scytonemin treatment in RAW 264.7 cells. Our results also showed that the degradation of IκBα and nuclear translocation of the p65 subunit were blocked by scytonemin in LPS-stimulated RAW 264.7 cells. Collectively, these results suggest that scytonemin inhibits skin inflammation by blocking the expression of inflammatory mediators, and the anti-inflammatory effect of scytonemin is mediated, at least in part, by down-regulation of NF-κB activity. Our results also suggest that scytonemin might be used as a multi-function skin care ingredient for UV protection and anti-inflammation.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4285
Author(s):  
Pimpichaya Sangchart ◽  
Panyada Panyatip ◽  
Teerasak Damrongrungruang ◽  
Aroonsri Priprem ◽  
Pramote Mahakunakorn ◽  
...  

The pineal gland is a neuroendocrine organ that plays an important role in anti-inflammation through the hormone melatonin. The anti-inflammatory effects of melatonin and its derivatives have been reported in both in vitro and in vivo models. Our previous study reported the potent antioxidant and neuroprotective activities of bromobenzoylamide substituted melatonin. In silico analysis successfully predicted that melatonin bromobenzoylamid derivatives were protected from metabolism by CYP2A1, which is a key enzyme of the melatonin metabolism process. Therefore, the anti-inflammatory activities of melatonin and its bromobenzoylamide derivatives BBM and EBM were investigated in LPS-induced RAW 264.7 macrophages and croton oil-induced ear edema in mice. The experiments showed that BBM and EBM significantly reduced production of the inflammatory mediators interleukin-6 (IL-6), prostaglandin E2 (PGE2), and nitric oxide (NO) in a dose-dependent manner, but only slightly affected TNF-α in LPS-induced RAW 264.7 macrophages. This suggests that modifying melatonin at either the N1-position or the N-acetyl side chain affected production of NO, PGE2 and IL-6 in in vitro model. In the croton oil-induced mouse ear edema model, BBM, significantly decreased ear edema thickness at 2–4 h. It leads to conclude that bromobenzoylamide derivatives of melatonin may be one of the potential candidates for a new type of anti-inflammatory agent.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Marilena Antunes-Ricardo ◽  
Janet A. Gutiérrez-Uribe ◽  
Carlos Martínez-Vitela ◽  
Sergio O. Serna-Saldívar

Opuntia ficus-indica(OFI) has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on different inflammatory markersin vitroandin vivo. OFI extract was obtained by alkaline hydrolysis of OFI cladodes powder and pure compounds were obtained by preparative chromatography. Nitric oxide (NO), cyclooxygenase-2 (COX-2), tumor necrosis factor- (TNF-)α, and interleukin- (IL-) 6 production were measured. NO production was tested in lipopolysaccharide-stimulated RAW 264.7 cells whilein vivostudies were carried on croton oil-induced ear edema model. OFI extract and diglycoside isorhamnetin-glucosyl-rhamnoside (IGR) at 125 ng/mL suppressed the NO productionin vitro(73.5 ± 4.8% and68.7±5.0%, resp.) without affecting cell viability. Likewise, IGR inhibited the ear edema (77.4±5.7%) equating the indomethacin effects (69.5±5.3%). Both IGR and OFI extract significantly inhibited the COX-2, TNF-α, and IL-6 production. IGR seems to be a suitable natural compound for development of new anti-inflammatory ingredient.


Sign in / Sign up

Export Citation Format

Share Document