Anti-inflammatory Activity of Mollugo cerviana Methanolic Extract in LPS-induced Acute Inflammatory RAW 264.7 Macrophages

Author(s):  
Robina Antony ◽  
Jijin Raveendran ◽  
Prabath Gopalakrishnan Biju

Background: The management of acute inflammation, which arises from complex biological responses to harmful stimuli, is an important determinant in recovery of the system from an otherwise detrimental outcome such as septicemia. However, the side effects and limitations of current therapeutics necessitate the development of newer and safer alternatives. Mollugo cerviana is a common medicinal herb of the Indian subcontinent and has been traditionally used for its fever mitigating, anti-microbial and hepatoprotective action. We have already reported the rich presence of radical scavenging phytochemicals in the plant extracts and their strong antioxidant properties. Objective: In the present study, we have evaluated the anti-inflammatory effects of methanolic extract (ME) of the areal parts of M. cerviana in a lipopolysaccharide (LPS)-induced acute inflammatory cell culture model. Method: RAW 264.7 mouse macrophages cell were stimulated by the bacterial endotoxin LPS at a concentration of 1 µg/mL. Cytotoxicity and anti-inflammatory potential of ME were carried out. Results: M. cerviana extract concentration up to 150 µg/ml was found to be non-toxic to cells (MTT and NRU assay). LPS induces acute inflammation by binding to TLR-4 receptors, initiating downstream signalling cascade that result in pro-inflammatory cytokine secretion. Extract treatment at 100 µg/ml suppressed LPS-induced gene expression (qPCR) and secretion (ELISA) of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, and the chemokine CCL2, indicating a dampening of the acute inflammatory cascade. LPS-induced elevation of ROS level (DCFDA method) was significant reduced by extract treatment. Nitric oxide production, as indicated by nitrite level, was significantly reduced post extract treatment. Conclusion: From this study, it is demonstrated that M. cerviana methanolic extract has potent anti-inflammatory effect in the in vitro acute inflammation model of LPS-stimulated RAW 264.7 cells. There is not reported study so far on the anti-inflammatory properties of M. cerviana in an LPS-induced acute inflammatory model which closely mimics a human bacteremia response. Hence, this study highlights the therapeutic potential of this extract as a source of anti-inflammatory lead molecules.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Kotha Anilkumar ◽  
Gorla V. Reddy ◽  
Rajaram Azad ◽  
Nagendra Sastry Yarla ◽  
Gangappa Dharmapuri ◽  
...  

Inflammation is the major causative factor of different diseases such as cardiovascular disease, diabetes, obesity, osteoporosis, rheumatoid arthritis, inflammatory bowel disease, and cancer. Anti-inflammatory drugs are often the first step of treatment in many of these diseases. The present study is aimed at evaluating the anti-inflammatory properties of isoorientin, a selective cyclooxygenase-2 (COX-2) inhibitor isolated from the tubers of Pueraria tuberosa, in vitro on mouse macrophage cell line (RAW 264.7) and in vivo on mouse paw edema and air pouch models of inflammation. Isoorientin reduced inflammation in RAW 264.7 cell line in vitro and carrageenan induced inflammatory animal model systems in vivo. Cellular infiltration into pouch tissue was reduced in isoorientin treated mice compared to carrageenan treated mice. Isoorientin treated RAW 264.7 cells and animals showed reduced expression of inflammatory proteins like COX-2, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), 5-lipoxygenase (5-LOX), and interleukin 1-β (IL-1-β) both in vitro and in vivo. The antioxidant enzyme levels of catalase and GST were markedly increased in isoorientin treated mice compared to carrageenan treated mice. These results suggest that isoorientin, a selective inhibitor of COX-2, not only exerts anti-inflammatory effects in LPS induced RAW cells and carrageenan induced inflammatory model systems but also exhibits potent antioxidant properties.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Praneetha Pallerla ◽  
Narsimha Reddy Yellu ◽  
Ravi Kumar Bobbala

Abstract Background The objective of the study is to evaluate the hepatoprotective activity of methanolic extract fractions of Lindernia ciliata (LC) and development of qualitative analytical profile of the bioactive fraction using HPLC fingerprinting analysis. All the fractions of methanolic extract of Lindernia ciliata (LCME) are assessed for their total phenolic, flavonoid contents and in vitro antioxidant properties by using DPPH, superoxide, nitric oxide, hydroxyl radical scavenging activities and reducing power assay. Acute toxicity study was conducted for all the fractions and the two test doses 50 and 100 mg/kg were selected for the hepatoprotective study. Liver damage was induced in different groups of rats by administering 3 g/kg.b.w.p.o. paracetamol and the effect of fractions were tested for hepatoprotective potential by evaluating serum biochemical parameters and histology of liver of rats. The effective fraction was evaluated for its antihepatotoxic activity against D-Galactosamine (400 mg/kg b.w. i.p.) and in vivo antioxidant parameters viz., Glutathione (GSH), Melondialdehyde (MDA) and Catalase (CAT) levels are estimated using liver homogenate. Results Among all the fractions, butanone fraction of LCME, (BNF-LCME) has shown better hepatoprotective activity and hence it is selected to evaluate the antihepatotoxicity against D-GaIN. The activity of BNF-LCME is well supported in in vitro and in vivo antioxidant studies and may be attributed to flavonoidal, phenolic compounds present in the fraction. Hence, BNF-LCME was subjected to the development of qualitative analytical profile using HPLC finger printing analysis. Conclusions All the fractions of LCME exhibited significant hepatoprotective activity and BNF-LCME (50 mg/kg) was identified as the most effective fraction.


2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110076
Author(s):  
Sheng Pan ◽  
Zi-Guan Zhu

A new flavonol named 6-(2'',3''-epoxy-3''-methylbutyl)-resokaempferol (1), together with five known compounds (2-6) were isolated from the EtOAc-soluble extract of the aerial part of Saussurea involucrata. Their structures were elucidated on the basis of spectroscopic methods. All compounds were evaluated for their anti-inflammatory effects by measuring the production of nitric oxide (NO) and TNF-α in vitro. Among them, compound 1 showed potential inhibitory activity on the production of NO and TNF-α in LPS-induced RAW 264.7 cells with IC50 values of 48.0 ± 1.5 and 41.4 ± 1.7 µM, respectively.


Steroids ◽  
2021 ◽  
pp. 108830
Author(s):  
Xiaorui Cai ◽  
Fei Sha ◽  
Chuanyi Zhao ◽  
Zhiwei Zheng ◽  
Shulin Zhao ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 615
Author(s):  
Shang-En Huang ◽  
Erna Sulistyowati ◽  
Yu-Ying Chao ◽  
Bin-Nan Wu ◽  
Zen-Kong Dai ◽  
...  

Osteoarthritis is a degenerative arthropathy that is mainly characterized by dysregulation of inflammatory responses. KMUP-1, a derived chemical synthetic of xanthine, has been shown to have anti-inflammatory and antioxidant properties. Here, we aimed to investigate the in vitro anti-inflammatory and in vivo anti-osteoarthritis effects of KMUP-1. Protein and gene expressions of inflammation markers were determined by ELISA, Western blotting and microarray, respectively. RAW264.7 mouse macrophages were cultured and pretreated with KMUP-1 (1, 5, 10 μM). The productions of TNF-α, IL-6, MMP-2 and MMP- 9 were reduced by KMUP-1 pretreatment in LPS-induced inflammation of RAW264.7 cells. The expressions of iNOS, TNF-α, COX-2, MMP-2 and MMP-9 were also inhibited by KMUP-1 pretreatment. The gene expression levels of TNF and COX families were also downregulated. In addition, KMUP-1 suppressed the activations of ERK, JNK and p38 as well as phosphorylation of IκBα/NF-κB signaling pathways. Furthermore, SIRT1 inhibitor attenuated the inhibitory effect of KMUP-1 in LPS-induced NF-κB activation. In vivo study showed that KMUP-1 reduced mechanical hyperalgesia in monoiodoacetic acid (MIA)-induced rats OA. Additionally, KMUP-1 pretreatment reduced the serum levels of TNF-α and IL-6 in MIA-injected rats. Moreover, macroscopic and histological observation showed that KMUP-1 reduced articular cartilage erosion in rats. Our results demonstrated that KMUP-1 inhibited the inflammatory responses and restored SIRT1 in vitro, alleviated joint-related pain and cartilage destruction in vivo. Taken together, KMUP-1 has the potential to improve MIA-induced articular cartilage degradation by inhibiting the levels and expression of inflammatory mediators suggesting that KMUP-1 might be a potential therapeutic agent for OA.


2021 ◽  
Vol 11 (10) ◽  
pp. 4711
Author(s):  
Woo Jin Lee ◽  
Wan Yi Li ◽  
Sang Woo Lee ◽  
Sung Keun Jung

Until now, the physiological effects of Soroseris hirsuta were primarily unknown. Here we have evaluated the anti-inflammatory and antioxidant effects of Soroseris hirsuta extract (SHE) on lipopolysaccharide (LPS)-activated murine macrophages RAW 264.7 cells. SHE inhibited nitric oxide expression and inducible nitric oxide synthase expression in RAW 264.7 cells treated with LPS. Moreover, SHE suppressed LPS-induced phosphorylation of IκB kinase, inhibitor of kappa B, p65, p38, and c-JUN N-terminal kinase. Western blot and immunofluorescence analyses showed that SHE suppressed p65 nuclear translocation induced by LPS. Furthermore, SHE inhibited the reactive oxygen species in LPS-treated RAW 264.7 cells. SHE significantly increased heme oxygenase-1 expression and the nuclear translocation of nuclear factor erythroid 2-related factor 2. SHE suppressed LPS-induced interleukin-1β mRNA expression in RAW 264.7 cells. Thus, SHE is a promising nutraceutical as it displays anti-inflammatory and antioxidant properties.


2019 ◽  
Author(s):  
Murugesh Kandasamy ◽  
Kit-Kay Mak ◽  
Thangaraj Devadoss ◽  
Punniyakoti Veeraveedu Thanikachalam ◽  
Raghavendra Sakirolla ◽  
...  

Abstract The transcription factor Nuclear factor erythroid-2-related factor 2 (NRF2) and its principal repressive regulator, the E3 ligase adaptor Kelch-like ECH-associated protein 1 (KEAP1), are critical in the regulation of inflammation, as well as maintenance of homeostasis. Thus, NRF2 activation provides cytoprotection against numerous inflammatory disorders. N-nicotinoylquinoxaline-2-carbohdyrazide (NQC) was designed by combining the important pharmacophoric features of bioactive compounds reported in the literature. NQC was synthesised and characterised using spectroscopic techniques. The compound was tested for its anti-inflammatory effect using LPSEc induced inflammation in mouse macrophages (RAW 264.7 cells). The effect of NQC on inflammatory cytokines was measured using ELISA. The Nrf2 activity of the compound NQC was determined using ‘Keap1:Nrf2 Inhibitor Screening Assay Kit’. To obtain the insights on NQC’s activity on Nrf2, molecular docking studies were performed using Schrodinger suite. The metabolic stability of NQC was determined using mouse, rat and human microsomes. NQC was found to be non-toxic until the dose of 50 µM on RAW 264.7 cells. The NQC showed potent anti-inflammatory effect in an in vitro model of Lipopolysaccharide (LPS) stimulated murine macrophages (RAW 264.7 cells) with an IC50 value 26.13 ± 1.17 µM. The NQC dose-dependently down regulated the pro-inflammatory cytokines (Interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α) and inflammatory mediator, prostaglandin E2 (PGE2) with IC50 values 13.27 ± 2.37, 10.13 ± 0.58, 14.41 ± 1.83 and 15.23 ± 0.91 µM respectively. Molecular docking studies confirmed the favourable binding of NQC at Kelch domain of Keap-1. It disrupts the Nrf2 interaction with kelch domain of keap 1 and its IC50 value was 4.21 ± 0.89 µM. The metabolic stability studies of NQC in human, rat and mouse liver microsomes revealed that it is quite stable with half-life values; 59.78 ± 6.73, 52.93 ± 7.81, 28.43 ± 8.13 minutes; microsomal intrinsic clearance values; 22.1 ± 4.31, 26.0 ± 5.17 and 47.13 ± 6.34 µL/min/mg protein; respectively. So, rat has comparable metabolic profile with human, thus, rat could be used for predicting the pharmacokinetics and metabolism of NQC in human. NQC is a new class of NRF2 activator with potent in vitro anti-inflammatory activity and good metabolic stability.


Author(s):  
Chun Whan Choi ◽  
Ju Young Shin ◽  
Changon Seo ◽  
Seong Su Hong ◽  
Eun-Kyung Ahn ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3910 ◽  
Author(s):  
Min-Seon Kim ◽  
Jin-Soo Park ◽  
You Chul Chung ◽  
Sungchan Jang ◽  
Chang-Gu Hyun ◽  
...  

Biorenovation is a microbial enzyme-catalyzed structural modification of organic compounds with the potential benefits of reduced toxicity and improved biological properties relative to their precursor compounds. In this study, we synthesized a novel compound verified as formononetin 7-O-phosphate (FMP) from formononetin (FM) using microbial biotransformation. We further compared the anti-inflammatory properties of FMP to FM in lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells. We observed that cell viabilities and inhibitory effects on LPS-induced nitric oxide (NO) production were greater in FMP-treated RAW 264.7 cells than in their FM-treated counterparts. In addition, FMP treatment suppressed the production of proinflammatory cytokines such as prostaglandin-E2 (PGE2), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner and concomitantly decreased the mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). We also found that FMP exerted its anti-inflammatory effects through the downregulation of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor kappa B (NF-κB) signaling pathways. In conclusion, we generated a novel anti-inflammatory compound using biorenovation and demonstrated its efficacy in cell-based in vitro assays.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5733
Author(s):  
Esrat Jahan Rupa ◽  
Jin Feng Li ◽  
Muhammad Huzaifa Arif ◽  
Han Yaxi ◽  
Aditi Mitra Puja ◽  
...  

This study aimed to produce and optimize a Cordyceps militaris-based oil-in-water (O/W) nanoemulsion (NE) encapsulated in sea buckthorn oil (SBT) using an ultrasonication process. Herein, a nonionic surfactant (Tween 80) and chitosan cosurfactant were used as emulsifying agents. The Cordyceps nanoemulsion (COR-NE) was characterized using Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and field-emission transmission electron microscope (FE-TEM). The DLS analyses revealed that the NE droplets were 87.0 ± 2.1 nm in diameter, with a PDI value of 0.089 ± 0.023, and zeta potential of −26.20 ± 2. The small size, low PDI, and stable zeta potential highlighted the excellent stability of the NE. The NE was tested for stability under different temperature (4 °C, 25 °C, and 60 °C) and storage conditions for 3 months where 4 °C did not affect the stability. Finally, in vitro cytotoxicity and anti-inflammatory activity were assessed. The results suggested that the NE was not toxic to RAW 264.7 or HaCaT (human keratinocyte) cell lines at up to 100 µL/mL. Anti-inflammatory activity in liposaccharides (LPS)-induced RAW 264.7 cells was evident at 50 µg/mL and showed inhibition of NO production and downregulation of pro-inflammatory gene expression. Further, the NE exhibited good antioxidant (2.96 ± 0.10 mg/mL) activity and inhibited E. coli and S. aureus bacterial growth. Overall, the COR-NE had greater efficacy than the free extract and added significant value for future biomedical and cosmetics applications.


Sign in / Sign up

Export Citation Format

Share Document