scholarly journals Inhibitory Effects of Prunella vulgaris L. Extract on 11β-HSD1 in Human Skin Cells

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Kyung-Baeg Roh ◽  
Deokhoon Park ◽  
Eunsun Jung

Glucocorticoids are a risk factor for age-induced skin structure and function defects, and the glucocorticoid-activating enzyme, 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), represents a promising therapeutic target. Prunella vulgaris L. (PV) is a perennial and an edible herbaceous plant normally cultivated in Asia and Europe. A recent study demonstrated a broad range of biological activities of PV including immune modulatory, antiviral, antiallergic, anti-inflammatory, antioxidant, and antidiabetic. However, little is known about the inhibitory effect of PV on 11β-HSD1. In this study, we investigated the inhibitory effect of Prunella vulgaris L. extract (PVE) and the underlying mechanism of 11β-HSD11 inhibition. Consistent with these results, cortisol levels were also reduced by PVE in vitro. The cortisone-induced translocation of glucocorticoids receptor (GR) was also attenuated. In addition, PVE inhibited a cortisone-mediated decrease in collagen content in skin. Collectively, these results suggest the beneficial effects of PVE in maintaining skin integrity.

2001 ◽  
Vol 71 (1) ◽  
pp. 18-24 ◽  
Author(s):  
Denis Bron ◽  
Reto Asmis

Successful strategy for the prevention of coronary heart disease (CHD) in particular of atherosclerosis, require a detailed understanding of the underlying mechanism. It is now being recognised that dietary antioxidants, in particular vitamin E, will play an important role in designing future strategies. Although more and more beneficial effects of vitamin E on atherosclerosis are being described, the biochemical and cell biological mechanism underlying these benefits are not yet fully understood, preventing the use of vitamin E as therapeutic agent. Recent new findings have shed new light on the physiological role of vitamin E and suggest that it has a much broader array of biological activities than originally expected. In addition to its well described role as an antioxidant, it is becoming evident that vitamin E also can modulate the immune system, suppress local and chronic inflammation, reduce blood coagulation and thrombus formation, and enhance cell function and survival. This review summarises new findings from in vitro studies and discusses their potential relevance in human atherosclerosis.


2016 ◽  
Vol 39 (4) ◽  
pp. 1581-1594 ◽  
Author(s):  
Jun-Kai Yan ◽  
Jie Zhu ◽  
Bei-Lin Gu ◽  
Wei-Hui Yan ◽  
Yong-Tao Xiao ◽  
...  

Background and Aims: Elevated intestinal permeability of lipopolysaccharide (LPS) is a major complication for patients with parenteral nutrition (PN), but the pathogenesis is poorly understood. Intestinal P-glycoprotein (P-gp) is one of the efflux transporters that contribute to restricting the permeability of lipopolysaccharide via transcellular route. P-gp expression may be regulated by PN ingredients, and thus this study sought to investigate the effect of PN on the expression of P-gp and to elucidate the underlying mechanism in vitro. Methods: Caco-2 cells were treated with PN ingredients. Changes in P-gp expression and function were determined and the role of ERK-FOXO 3a pathway was studied. Transport studies of FITC-lipopolysaccharide (FITC-LPS) across Caco-2 cell monolayers were also performed. Results: Among PN ingredients, soybean oil-based lipid emulsion (SOLE) exhibited significant inhibitory effect on P-gp expression and function. This regulation was mediated via activation of ERK pathway with subsequent nuclear exclusion of FOXO 3a. Importantly, P-gp participated in antagonizing the permeation of FITC-LPS (apical to basolateral) across Caco-2 cell monolayers. SOLE significantly increased the permeability of FITC-LPS (apical to basolateral), which was associated with impaired P-gp function. Conclusions: The expression and function of intestinal P-gp is suppressed by SOLE in vitro.


2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


Zygote ◽  
2016 ◽  
Vol 25 (1) ◽  
pp. 10-16 ◽  
Author(s):  
J. Zapata-Martínez ◽  
G. Sánchez-Toranzo ◽  
F. Chaín ◽  
C.A.N. Catalán ◽  
M.I. Bühler

SummarySesquiterpene lactones (STLs) are a large and structurally diverse group of plant metabolites generally found in the Asteraceae family. STLs exhibit a wide spectrum of biological activities and it is generally accepted that their major mechanism of action is the alkylation of the thiol groups of biological molecules. The guaianolides is one of various groups of STLs. Anti-tumour and anti-migraine effects, an allergenic agent, an inhibitor of smooth muscle cells and of meristematic cell proliferation are only a few of the most commonly reported activities of STLs. In amphibians, fully grown ovarian oocytes are arrested at the beginning of meiosis I. Under stimulus with progesterone, this meiotic arrest is released and meiosis progresses to metaphase II, a process known as oocyte maturation. There are previous records of the inhibitory effect of dehydroleucodin (DhL), a guaianolide lactone, on the progression of meiosis. It has been also shown that DhL and its 11,13-dihydroderivative (2H-DhL; a mixture of epimers at C-11) act as blockers of the resumption of meiosis in fully grown ovarian oocytes from the amphibian Rhinella arenarum (formerly classified as Bufo arenarum). The aim of this study was to analyze the effect of four closely related guaianolides, i.e., DhL, achillin, desacetoxymatricarin and estafietin as possible inhibitors of meiosis in oocytes of amphibians in vitro and discuss some structure–activity relationships. It was found that the inhibitory effect on meiosis resumption is greater when the lactone has two potentially reactive centres, either a α,β–α′,β′-diunsaturated cyclopentanone moiety or an epoxide group plus an exo-methylene-γ-lactone function.


Author(s):  
Pingping Jia ◽  
Yi Zhang ◽  
Jian Xu ◽  
Mei Zhu ◽  
Shize Peng ◽  
...  

Abstract Background Resistance to anti-tuberculosis (TB) drug is a major issue in TB control, and demands the discovery of new drugs targeting virulence factor ESX-1. Methods We first established a high-throughput screen (HTS) assay for the discovery of ESX-1 secretion inhibitors. The positive hits were then evaluated for the potency of diminishing the survival of virulent mycobacterium and reducing bacterial virulence. We further investigated the probability of inducing drug-resistance and the underlying mechanism using M-PFC. Results A robust HTS assay was developed to identify small molecules that inhibit ESX-1 secretion without impairing bacterial growth in vitro. A hit named IMB-BZ specifically inhibits the secretion of CFP-10 and reduces virulence in an ESX-1-dependent manner, therefore resulting in significant reduction in intracellular and in vivo survival of mycobacteria. Blocking the CFP-10-EccCb1 interaction directly or indirectly underlies the inhibitory effect of IMB-BZ on the secretion of CFP-10. Importantly, our finding shows that the ESX-1 inhibitors pose low risk of drug resistance development by mycobacteria in vitro as compared with traditional anti-TB drug, and exhibit high potency against chronic mycobacterial infection. Conclusion Targeting ESX-1 may lead to the development of novel therapeutics for tuberculosis. IMB-BZ holds the potential for future development into a new anti-TB drug.


1997 ◽  
Vol 273 (6) ◽  
pp. E1127-E1132 ◽  
Author(s):  
Pascal Fragner ◽  
Olivier Presset ◽  
Nicole Bernad ◽  
Jean Martinez ◽  
Claude Roze ◽  
...  

The tripeptide pyro-Glu-His-Pro-NH2[thyrotropin-releasing hormone (TRH)] was isolated from the hypothalamus as a thyrotropin-releasing factor. It has a broad spectrum of central nervous system-mediated actions, including the stimulation of exocrine pancreatic secretion. TRH is also synthesized in the endocrine pancreas and found in the systemic circulation. Enzymatic degradation of TRH in vivo produces other bioactive peptides such as cyclo(His-Pro). Because of the short half-life of TRH and the stability of cyclo(His-Pro) in vivo, we postulated that at least part of the peripheral TRH effects on the exocrine pancreatic secretion may be attributed to cyclo(His-Pro), which has been shown to have other biological activities. This study determines in parallel the peripheral effects of TRH and cyclo(His-Pro) as well as the putative contribution of other TRH-related peptides on exocrine pancreatic secretion in rats. TRH and its metabolite cyclo(His-Pro) dose dependently inhibited 2-deoxy-d-glucose (2-DG)-stimulated pancreatic secretion. TRH and all the related peptides tested had no effect on the basal and cholecystokinin-stimulated amylase release from pancreatic acinar cells in vitro. These data indicate that cyclo(His-Pro) mimics the peripheral inhibitory effect of TRH on 2-DG-stimulated exocrine pancreatic secretion. This effect is not detected on isolated pancreatic acini. Our findings provide a new biological contribution for cyclo(His-Pro) with potential experimental and clinical applications.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bao-Yu Jia ◽  
De-Cai Xiang ◽  
Qing-Yong Shao ◽  
Bin Zhang ◽  
Shao-Na Liu ◽  
...  

AbstractMammalian oocytes represent impaired quality after undergoing a process of postovulatory aging, which can be alleviated through various effective ways such as reagent treatment. Accumulating evidences have revealed the beneficial effects of astaxanthin (Ax) as a potential antioxidant on reproductive biology. Here, porcine matured oocytes were used as a model to explore whether Ax supplement can protect against oocyte aging in vitro and the underlying mechanism, and therefore they were cultured with or without 2.5 μM Ax for an additional 24 h. Aged oocytes treated with Ax showed improved yield and quality of blastocysts as well as recovered expression of maternal genes. Importantly, oxidative stress in aged oocytes was relieved through Ax treatment, based on reduced reactive oxygen species and enhanced glutathione and antioxidant gene expression. Moreover, inhibition in apoptosis and autophagy of aged oocyte by Ax was confirmed through decreased caspase-3, cathepsin B and autophagic activities. Ax could also maintain spindle organization and actin expression, and rescue functional status of organelles including mitochondria, endoplasmic reticulum, Golgi apparatus and lysosomes according to restored fluorescence intensity. In conclusion, Ax might provide an alternative for ameliorating the oocyte quality following aging in vitro, through the mechanisms mediated by its antioxidant properties.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 374 ◽  
Author(s):  
Gaber El-Saber Batiha ◽  
Amany Magdy Beshbishy ◽  
Muhammad Ikram ◽  
Zohair S. Mulla ◽  
Mohamed E. Abd El-Hack ◽  
...  

Flavonoids are a class of natural substances present in plants, fruits, vegetables, wine, bulbs, bark, stems, roots, and tea. Several attempts are being made to isolate such natural products, which are popular for their health benefits. Flavonoids are now seen as an essential component in a number of cosmetic, pharmaceutical, and medicinal formulations. Quercetin is the major polyphenolic flavonoid found in food products, including berries, apples, cauliflower, tea, cabbage, nuts, and onions that have traditionally been treated as anticancer and antiviral, and used for the treatment of allergic, metabolic, and inflammatory disorders, eye and cardiovascular diseases, and arthritis. Pharmacologically, quercetin has been examined against various microorganisms and parasites, including pathogenic bacteria, viruses, and Plasmodium, Babesia, and Theileria parasites. Additionally, it has shown beneficial effects against Alzheimer’s disease (AD), and this activity is due to its inhibitory effect against acetylcholinesterase. It has also been documented to possess antioxidant, antifungal, anti-carcinogenic, hepatoprotective, and cytotoxic activity. Quercetin has been documented to accumulate in the lungs, liver, kidneys, and small intestines, with lower levels seen in the brain, heart, and spleen, and it is extracted through the renal, fecal, and respiratory systems. The current review examines the pharmacokinetics, as well as the toxic and biological activities of quercetin.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1078 ◽  
Author(s):  
Silvia Bittner Fialová ◽  
Martin Kello ◽  
Matúš Čoma ◽  
Lívia Slobodníková ◽  
Eva Drobná ◽  
...  

On its own, rosmarinic acid possesses multiple biological activities such as anti-inflammatory, antimicrobial, cardioprotective and antitumor properties, and these are the consequence of its ROS scavenging and inhibitory effect on inflammation. In this study, two quaternary phosphonium salts of rosmarinic acid were prepared for the purpose of increasing its penetration into biological systems with the aim of improving its antimicrobial, antifungal, antiprotozoal and antitumor activity. The synthetized molecules, the triphenylphosphonium and tricyclohexylphosphonium salts of rosmarinic acid, exhibited significantly stronger inhibitory effects on the growth of HCT116 cells with IC50 values of 7.28 or 8.13 μM in comparison to the initial substance, rosmarinic acid (>300 μM). For the synthesized derivatives, we detected a greater than three-fold increase of activity against Acanthamoeba quina, and a greater than eight-fold increase of activity against A. lugdunensis in comparison to rosmarinic acid. Furthermore, we recorded significantly higher antimicrobial activity of the synthetized derivatives when compared to rosmarinic acid itself. Both synthetized quaternary phosphonium salts of rosmarinic acid appear to be promising antitumor and antimicrobial agents, as well as impressive molecules for further research.


2015 ◽  
Vol 35 (11) ◽  
pp. 1783-1789 ◽  
Author(s):  
Junxiang Yin ◽  
Pengcheng Han ◽  
Zhiwei Tang ◽  
Qingwei Liu ◽  
Jiong Shi

Stroke is one of the leading causes of death. Growing evidence indicates that ketone bodies have beneficial effects in treating stroke, but their underlying mechanism remains unclear. Our previous study showed ketone bodies reduced reactive oxygen species by using NADH as an electron donor, thus increasing the NAD+/NADH ratio. In this study, we investigated whether mitochondrial NAD+-dependent Sirtuin 3 (SIRT3) could mediate the neuroprotective effects of ketone bodies after ischemic stroke. We injected mice with either normal saline or ketones (beta-hydroxybutyrate and acetoacetate) at 30 minutes after ischemia induced by transient middle cerebral artery (MCA) occlusion. We found that ketone treatment enhanced mitochondria function, reduced oxidative stress, and therefore reduced infarct volume. This led to improved neurologic function after ischemia, including the neurologic score and the performance in Rotarod and open field tests. We further showed that ketones' effects were achieved by upregulating NAD+-dependent SIRT3 and its downstream substrates forkhead box O3a (FoxO3a) and superoxide dismutase 2 (SOD2) in the penumbra region since knocking down SIRT3 in vitro diminished ketones' beneficial effects. These results provide us a foundation to develop novel therapeutics targeting this SIRT3-FoxO3a-SOD2 pathway.


Sign in / Sign up

Export Citation Format

Share Document