scholarly journals Fuzzy Approach in Rail Track Degradation Prediction

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Mostafa Karimpour ◽  
Lalith Hitihamillage ◽  
Najwa Elkhoury ◽  
Sara Moridpour ◽  
Reyhaneh Hesami

Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work. With the restrictions on financial support, the rail transport authorities are in pursuit of improved modern methods, which can provide a precise prediction of rail maintenance timeframe. The expectation from such a method is to develop models to minimise the human error that is strongly related to manual prediction. Such models will help rail transport authorities in understanding how the track degradation occurs at different conditions (e.g., rail type, rail profile) over time. They need a well-structured technique to identify the precise time when rail tracks fail to minimise the maintenance cost/time. The rail track characteristics that have been collected over the years will be used in developing a degradation prediction model for rail tracks. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use the data in prediction model development. An accurate model can play a key role in the estimation of the long-term behaviour of rail tracks. Accurate models can increase the efficiency of maintenance activities and decrease the cost of maintenance in long-term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curves and straight sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model. The results from the developed model show that it is capable of predicting the gauge values with R2 of 0.6 and 0.78 for curves and straights, respectively.

2020 ◽  
Author(s):  
Sina Faizollahzadeh Ardabili ◽  
Amir Mosavi ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
Annamaria R. Varkonyi-Koczy ◽  
...  

Several outbreak prediction models for COVID-19 are being used by officials around the world to make informed-decisions and enforce relevant control measures. Among the standard models for COVID-19 global pandemic prediction, simple epidemiological and statistical models have received more attention by authorities, and they are popular in the media. Due to a high level of uncertainty and lack of essential data, standard models have shown low accuracy for long-term prediction. Although the literature includes several attempts to address this issue, the essential generalization and robustness abilities of existing models needs to be improved. This paper presents a comparative analysis of machine learning and soft computing models to predict the COVID-19 outbreak as an alternative to SIR and SEIR models. Among a wide range of machine learning models investigated, two models showed promising results (i.e., multi-layered perceptron, MLP, and adaptive network-based fuzzy inference system, ANFIS). Based on the results reported here, and due to the highly complex nature of the COVID-19 outbreak and variation in its behavior from nation-to-nation, this study suggests machine learning as an effective tool to model the outbreak. This paper provides an initial benchmarking to demonstrate the potential of machine learning for future research. Paper further suggests that real novelty in outbreak prediction can be realized through integrating machine learning and SEIR models.


2015 ◽  
Vol 789-790 ◽  
pp. 263-267
Author(s):  
Yan Lei Li ◽  
Ming Yan Wang ◽  
You Min Hu ◽  
Bo Wu

This paper proposes a new method to predict the spindle deformation based on temperature data. The method introduces ANFIS (adaptive neuro-fuzzy inference system). For building the predictive model, we first extract temperature data from sensors in the spindle, and then they are used as the inputs to train ANFIS. To evaluate the performance of the prediction, an experiment is implemented. Three Pt-100 thermal resistances is used to monitor the spindle temperature, and an inductive current sensor is used to obtain the spindle deformation. The experimental results display that our prediction model can better predict the spindle deformation and improve the performance of the spindle.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2771 ◽  
Author(s):  
Abbas Mardani ◽  
Dalia Streimikiene ◽  
Mehrbakhsh Nilashi ◽  
Daniel Arias Aranda ◽  
Nanthakumar Loganathan ◽  
...  

Understanding the relationships among CO2 emissions, energy consumption, and economic growth helps nations to develop energy sources and formulate energy policies in order to enhance sustainable development. The present research is aimed at developing a novel efficient model for analyzing the relationships amongst the three aforementioned indicators in G20 countries using an adaptive neuro-fuzzy inference system (ANFIS) model in the period from 1962 to 2016. In this regard, the ANFIS model has been used with prediction models using real data to predict CO2 emissions based on two important input indicators, energy consumption and economic growth. This study made use of the fuzzy rules through ANFIS to generalize the relationships of the input and output indicators in order to make a prediction of CO2 emissions. The experimental findings on a real-world dataset of World Development Indicators (WDI) revealed that the proposed model efficiently predicted the CO2 emissions based on energy consumption and economic growth. The direction of the interrelationship is highly important from the economic and energy policy-making perspectives for this international forum, as G20 countries are primarily focused on the governance of the global economy.


2019 ◽  
Vol 31 (2) ◽  
Author(s):  
Anika Nowshin Mowrin ◽  
Md. Hadiuzzaman ◽  
Saurav Barua ◽  
Md. Mizanur Rahman

Commuter train is a viable alternative to road transport to ease the traffic congestion which requires appropriate planning by concerned authorities. The research is aimed to assess passengers’ perception about commuter train service running in areas near Dhaka city. An Adaptive Neuro Fuzzy Inference System (ANFIS) model has been developed to evaluate service quality (SQ) of commuter train. Field survey data has been conducted among 802 respondents who were the regular user of commuter train and 12 attributes have been selected for model development. ANFIS was developed by the training and then tested by 80% and 20% of the total sample respectively. After that, model performance has been evaluated by (i) Confusion Matrix (ii) Root Mean Square Error (RMSE) and attributes are ranked based on their relative importance. The proposed ANFIS model has 61.50% accuracy in training and 47.80% accuracy in testing.  From the results, it is found that 'Bogie condition', 'Cleanliness', ‘Female harassment’, 'Behavior of staff' and 'Toilet facility' are the most significant attributes. This indicates that some necessary measures should be taken immediately to recover the effects of these attributes to improve the SQ of commuter train. 


2021 ◽  
Vol 9 (12) ◽  
pp. 1365
Author(s):  
Ho Namgung ◽  
Joo-Sung Kim

To reduce the risk of collision in territorial sea areas, including trade ports and entry waterways, and to enhance the safety and efficiency of ship passage, the International Maritime Organization requires the governing body of every country to establish and operate a vessel traffic service (VTS). However, previous studies on risk prediction models did not consider the locations of near collisions and actual collisions and only employed a combined collision risk index in surveillance sea areas. In this study, we propose a regional collision risk prediction system for a collision area considering spatial patterns using a density-based spatial clustering of applications with noise (DBSCAN). Furthermore, a fuzzy inference system based on a near collision (FIS-NC) and long short-term memory (LSTM) is adopted to help a vessel traffic service operator (VTSO) make timely optimal decisions. In the local spatial pattern stage, the ship trajectory was determined by identifying the actual-collision and near-collision locations simultaneously. Finally, the system was developed by learning a sequence dataset from the extracted trajectory of the ship when a collision occurred. The proposed system can recommend an action faster than the fuzzy inference system based on the near-collision location. Therefore, using the developed system, a VTSO can quickly predict ship collision risk situations and make timely optimal decisions at dangerous surveillance sea areas.


Author(s):  
Muhammed Oguz Tas ◽  
Ugur Yayan ◽  
Hasan Serhan Yavuz ◽  
Ahmet Yazici

Robotic systems are used many areas where it is dangerous or difficult for people to do. The importance of autonomous robots increased with the Industry 4.0, and the concept of reliability needed more attention for long term operability of robotic systems. In this study, reliability based task allocation analysis is performed for robots by using fuzzy logic. With the help of fuzzy inference system, the result of reliability based task allocation are obtained using the amount of carried load and load carrying distances. In the study, cases of task allocation based on nearest and reliability were analyzed and compared. Experimental results showed that, the system reliability that occurs with reliability based task allocation is higher than the system reliability that occurs with nearest based task allocation.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
A Youssef

Abstract Study question Which models that predict pregnancy outcome in couples with unexplained RPL exist and what is the performance of the most used model? Summary answer We identified seven prediction models; none followed the recommended prediction model development steps. Moreover, the most used model showed poor predictive performance. What is known already RPL remains unexplained in 50–75% of couples For these couples, there is no effective treatment option and clinical management rests on supportive care. Essential part of supportive care consists of counselling on the prognosis of subsequent pregnancies. Indeed, multiple prediction models exist, however the quality and validity of these models varies. In addition, the prediction model developed by Brigham et al is the most widely used model, but has never been externally validated. Study design, size, duration We performed a systematic review to identify prediction models for pregnancy outcome after unexplained RPL. In addition we performed an external validation of the Brigham model in a retrospective cohort, consisting of 668 couples with unexplained RPL that visited our RPL clinic between 2004 and 2019. Participants/materials, setting, methods A systematic search was performed in December 2020 in Pubmed, Embase, Web of Science and Cochrane library to identify relevant studies. Eligible studies were selected and assessed according to the TRIPOD) guidelines, covering topics on model performance and validation statement. The performance of predicting live birth in the Brigham model was evaluated through calibration and discrimination, in which the observed pregnancy rates were compared to the predicted pregnancy rates. Main results and the role of chance Seven models were compared and assessed according to the TRIPOD statement. This resulted in two studies of low, three of moderate and two of above average reporting quality. These studies did not follow the recommended steps for model development and did not calculate a sample size. Furthermore, the predictive performance of neither of these models was internally- or externally validated. We performed an external validation of Brigham model. Calibration showed overestimation of the model and too extreme predictions, with a negative calibration intercept of –0.52 (CI 95% –0.68 – –0.36), with a calibration slope of 0.39 (CI 95% 0.07 – 0.71). The discriminative ability of the model was very low with a concordance statistic of 0.55 (CI 95% 0.50 – 0.59). Limitations, reasons for caution None of the studies are specifically named prediction models, therefore models may have been missed in the selection process. The external validation cohort used a retrospective design, in which only the first pregnancy after intake was registered. Follow-up time was not limited, which is important in counselling unexplained RPL couples. Wider implications of the findings: Currently, there are no suitable models that predict on pregnancy outcome after RPL. Moreover, we are in need of a model with several variables such that prognosis is individualized, and factors from both the female as the male to enable a couple specific prognosis. Trial registration number Not applicable


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Veronika Rypdal ◽  
◽  
Jaime Guzman ◽  
Andrew Henrey ◽  
Thomas Loughin ◽  
...  

Abstract Background Models to predict disease course and long-term outcome based on clinical characteristics at disease onset may guide early treatment strategies in juvenile idiopathic arthritis (JIA). Before a prediction model can be recommended for use in clinical practice, it needs to be validated in a different cohort than the one used for building the model. The aim of the current study was to validate the predictive performance of the Canadian prediction model developed by Guzman et al. and the Nordic model derived from Rypdal et al. to predict severe disease course and non-achievement of remission in Nordic patients with JIA. Methods The Canadian and Nordic multivariable logistic regression models were evaluated in the Nordic JIA cohort for prediction of non-achievement of remission, and the data-driven outcome denoted severe disease course. A total of 440 patients in the Nordic cohort with a baseline visit and an 8-year visit were included. The Canadian prediction model was first externally validated exactly as published. Both the Nordic and Canadian models were subsequently evaluated with repeated fine-tuning of model coefficients in training sets and testing in disjoint validation sets. The predictive performances of the models were assessed with receiver operating characteristic curves and C-indices. A model with a C-index above 0.7 was considered useful for clinical prediction. Results The Canadian prediction model had excellent predictive ability and was comparable in performance to the Nordic model in predicting severe disease course in the Nordic JIA cohort. The Canadian model yielded a C-index of 0.85 (IQR 0.83–0.87) for prediction of severe disease course and a C-index of 0.66 (0.63–0.68) for prediction of non-achievement of remission when applied directly. The median C-indices after fine-tuning were 0.85 (0.80–0.89) and 0.69 (0.65–0.73), respectively. Internal validation of the Nordic model for prediction of severe disease course resulted in a median C-index of 0.90 (0.86–0.92). Conclusions External validation of the Canadian model and internal validation of the Nordic model with severe disease course as outcome confirm their predictive abilities. Our findings suggest that predicting long-term remission is more challenging than predicting severe disease course.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Nan Jia ◽  
Liang Yu ◽  
KaiXing Yang ◽  
RuoMei Wang ◽  
XiaoNan Luo ◽  
...  

Participation in a regular exercise program can improve health status and contribute to an increase in life expectancy. However, exercise accidents like dehydration, exertional heatstroke, syncope, and even sudden death exist. If these accidents can be analyzed or predicted before they happen, it will be beneficial to alleviate or avoid uncomfortable or unacceptable human disease. Therefore, an exercise thermophysiology comfort prediction model is needed. In this paper, coupling the thermal interactions among human body, clothing, and environment (HCE) as well as the human body physiological properties, a human thermophysiology regulatory model is designed to enhance the human thermophysiology simulation in the HCE system. Some important thermal and physiological performances can be simulated. According to the simulation results, a human exercise thermophysiology comfort prediction method based on fuzzy inference system is proposed. The experiment results show that there is the same prediction trend between the experiment result and simulation result about thermophysiology comfort. At last, a mobile application platform for human exercise comfort prediction is designed and implemented.


Sign in / Sign up

Export Citation Format

Share Document