scholarly journals FNDC4 Inhibits RANKL-Induced Osteoclast Formation by Suppressing NF-κB Activation and CXCL10 Expression

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Zheng-tao Lv ◽  
Shuang Liang ◽  
Kun Chen ◽  
Jia-ming Zhang ◽  
Peng Cheng ◽  
...  

FNDC4 acts as an anti-inflammatory factor on macrophages and improves mouse model of induced colitis. Considering osteoclast formation is characterized by the activation of inflammation-related pathways, we thus speculated that FNDC4 may play a pivotal role in this process. RT-qPCR analysis was performed to confirm the expression of osteoclast formation related genes in primary murine bone marrow macrophages (BMMs). RANKL-treated BMMs were cultured with FNDC4 to evaluate the effect of FNDC4 on osteoclast differentiation. TRAP staining and bone resorption pits assay were used to assess osteoclast formation and bone resorption, respectively. Luciferase assay and western blotting analysis were conducted to determine whether FNDC4 inhibited osteoclast formation via NF-κB signaling in RAW 264.7 cells. Furthermore, to identify gene signatures in FNDC4-treated BMMs and to use these to elucidate the underlying molecular mechanisms during osteoclast formation, we adopted a bioinformatics approach by downloading the GSE76172 gene expression profiling dataset from the Gene Expression Omnibus (GEO) database. FNDC4 inhibited RANKL-induced osteoclastogenesis and mature osteoclast resorptive function in a dose-dependent manner. Results of NF-κB luciferase assay suggested that FNDC4 could significantly suppress the RANKL-induced NF-κB transcriptional activity. Based on the protein-protein interaction network, CXCL10 was identified as the differentially expressed gene with the highest connectivity degree (degree = 23); it was drastically downregulated in the presence of FNDC4, but supplementation of CXCL10 (10 ng/mL) partially ameliorated the FNDC4-induced inhibition of osteoclast formation. Taken together, we speculated that FNDC4 could suppress osteoclast formation via NF-κB pathway and downregulation of CXCL10.

2019 ◽  
Vol 6 (6) ◽  
pp. 190360 ◽  
Author(s):  
Liuliu Yan ◽  
Lulu Lu ◽  
Fangbin Hu ◽  
Dattatrya Shetti ◽  
Kun Wei

Osteoclasts are multinuclear giant cells that have unique ability to degrade bone. The search for new medicines that modulate the formation and function of osteoclasts is a potential approach for treating osteoclast-related bone diseases. Piceatannol (PIC) is a natural organic polyphenolic stilbene compound found in diverse plants with a strong antioxidant and anti-inflammatory effect. However, the effect of PIC on bone health has not been scrutinized systematically. In this study, we used RAW264.7, an osteoclast lineage of cells of murine macrophages, to investigate the effects and the underlying mechanisms of PIC on osteoclasts. Here, we demonstrated that PIC treatment ranging from 0 to 40 µM strongly inhibited osteoclast formation and bone resorption in a dose-dependent manner. Furthermore, the inhibitory effect of PIC was accompanied by the decrease of osteoclast-specific genes. At the molecular level, PIC suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK1/2), NF-κB p65, IκBα and AKT. Besides, PIC promoted the apoptosis of mature osteoclasts by inducing caspase-3 expression. In conclusion, our results suggested that PIC inhibited RANKL-induced osteoclastogenesis and bone resorption by suppressing MAPK, NF-κB and AKT signalling pathways and promoted caspase3-mediated apoptosis of mature osteoclasts, which might contribute to the treatment of bone diseases characterized by excessive bone resorption.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ming-Xuan Feng ◽  
Jian-Xin Hong ◽  
Qiang Wang ◽  
Yong-Yong Fan ◽  
Chi-Ting Yuan ◽  
...  

Abstract Bone is the most common site of distant relapse in breast cancer, leading to severe complications which dramatically affect the patients’ quality of life. It is believed that the crosstalk between metastatic breast cancer cells and osteoclasts is critical for breast cancer-induced osteolysis. In this study, the effects of dihydroartemisinin (DHA) on osteoclast formation, bone resorption, osteoblast differentiation and mineralization were initially assessed in vitro, followed by further investigation in a titanium-particle-induced osteolysis model in vivo. Based on the proved inhibitory effect of DHA on osteolysis, DHA was further applied to MDA-MB-231 breast cancer-induced mouse osteolysis model, with the underlying molecular mechanisms further investigated. Here, we verified for the first time that DHA suppressed osteoclast differentiation, F-actin ring formation and bone resorption through suppressing AKT/SRC pathways, leading to the preventive effect of DHA on titanium-particle-induced osteolysis without affecting osteoblast function. More importantly, we demonstrated that DHA inhibited breast tumor-induced osteolysis through inhibiting the proliferation, migration and invasion of MDA-MB-231 cells via modulating AKT signaling pathway. In conclusion, DHA effectively inhibited osteoclastogenesis and prevented breast cancer-induced osteolysis.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hiroko Imai ◽  
Kentaro Yoshimura ◽  
Yoichi Miyamoto ◽  
Kiyohito Sasa ◽  
Marika Sugano ◽  
...  

Abstract Monocarboxylate transporters (MCTs) provide transmembrane transport of monocarboxylates such as lactate and pyruvate. The present results showed that α-cyano-4-hydroxycinnamic acid (CHC), an inhibitor of MCTs, promoted osteoclast differentiation from macrophages at lower concentrations (0.1–0.3 mM) and suppressed that at a higher concentration (1.0 mM). On the other hand, CHC reduced the number of mature osteoclasts on the surface of dentin in a concentration-dependent manner. Additionally, macrophages and osteoclasts were found to express the Mct1, Mct2, and Mct4 genes, with Mct1 and Mct4 expression higher in macrophages, and that of Mct2 higher in osteoclasts. Although Mct1 gene knockdown in macrophages enhanced osteoclast formation induced by RANKL, Mct2 gene knockdown suppressed that. Finally, Mct2 gene silencing in mature osteoclasts decreased their number and, thereby, bone resorption. These results suggest that MCT1 is a negative regulator and MCT2 a positive regulator of osteoclast differentiation, while MCT2 is required for bone resorption by osteoclasts.


2022 ◽  
Vol 12 ◽  
Author(s):  
Meisong Zhu ◽  
Qiang Xu ◽  
Xinmin Yang ◽  
Haibo Zhan ◽  
Bin Zhang ◽  
...  

Disruption of extracellular matrix (ECM) homeostasis and subchondral bone remodeling play significant roles in osteoarthritis (OA) pathogenesis. Vindoline (Vin), an indole alkaloid extracted from the medicinal plant Catharanthus roseus, possesses anti-inflammatory properties. According to previous studies, inflammation is closely associated with osteoclast differentiation and the disorders of the homeostasis between ECM. Although Vin has demonstrated effective anti-inflammatory properties, its effects on the progression of OA remain unclear. We hypothesized that Vin may suppress the progress of OA by suppressing osteoclastogenesis and stabilizing ECM of articular cartilage. Therefore, we investigated the effects and molecular mechanisms of Vin as a treatment for OA in vitro and in vivo. In the present study, we found that Vin significantly suppressed RANKL-induced osteoclast formation and obviously stabilized the disorders of the ECM homeostasis stimulated by IL-1β in a dose-dependent manner. The mRNA expressions of osteoclast-specific genes were inhibited by Vin treatment. Vin also suppressed IL-1β-induced mRNA expressions of catabolism and protected the mRNA expressions of anabolism. Moreover, Vin notably inhibited the activation of RANKL-induced and IL-1β-induced NF-κB and ERK pathways. In vivo, Vin played a protective role by inhibiting osteoclast formation and stabilizing cartilage ECM in destabilization of the medial meniscus (DMM)-induced OA mice. Collectively, our observations provide a molecular-level basis for Vin’s potential in the treatment of OA.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1656
Author(s):  
Hyeon-Hwa Nam ◽  
A Yeong Lee ◽  
Yun-Soo Seo ◽  
Inkyu Park ◽  
Sungyu Yang ◽  
...  

Scrophulariae Radix, derived from the dried roots of Scrophularia ningpoensis Hemsl. or S. buergeriana Miq, is a traditional herbal medicine used in Asia to treat rheumatism, arthritis, and pharyngalgia. However, the effects of Scrophularia buergeriana, S. koraeinsis, and S. takesimensis on osteoclast formation and bone resorption remain unclear. In this study, we investigated the morphological characteristics and harpagoside content of S. buergeriana, S. koraiensis, and S. takesimensis, and compared the effects of ethanol extracts of these species using nuclear factor (NF)-κB ligand (RANKL)-mediated osteoclast differentiation. The harpagoside content of the three Scrophularia species was analyzed by high-performance liquid chromatography–mass spectrometry (HPLC/MS). Their therapeutic effects were evaluated by tartrate-resistant acid phosphatase (TRAP)-positive cell formation and bone resorption in bone marrow-derived macrophages (BMMs) harvested from ICR mice. We confirmed the presence of harpagoside in the Scrophularia species. The harpagoside content of S. buergeriana, S. koraiensis, and S. takesimensis was 1.94 ± 0.24 mg/g, 6.47 ± 0.02 mg/g, and 5.50 ± 0.02 mg/g, respectively. Treatment of BMMs with extracts of the three Scrophularia species inhibited TRAP-positive cell formation in a dose-dependent manner. The area of hydroxyapatite-absorbed osteoclasts was markedly decreased after treatment with the three Scrophularia species extracts. Our results indicated that the three species of the genus Scrophularia might exert preventive effects on bone disorders by inhibiting osteoclast differentiation and bone resorption, suggesting that these species may have medicinal and functional value.


Endocrinology ◽  
2006 ◽  
Vol 147 (10) ◽  
pp. 4608-4617 ◽  
Author(s):  
Miho Matsuda ◽  
Tada-aki Yamamoto ◽  
Masato Hirata

Calcitonin (CT), whose secretion from thyroid glands is regulated by increases in the concentration of extracellular Ca2+, is a well-known hormone that regulates calcium homeostasis. However, the molecular mechanisms underlying the gene expression dependent on Ca2+ have not been clarified. The downstream regulatory element (DRE) antagonist modulator (DREAM) was recently identified as a Ca2+-dependent transcriptional repressor. In the present study, we investigated the possible involvement of DREAM in the regulation of CT gene expression and secretion. A luciferase assay using TT cells, a thyroid carcinoma cell line, showed that a particular region in the CT gene promoter repressed the promoter activity under basal conditions but induced the activity when the Ca2+ concentration was increased. We found two DRE sequences in a region located upstream from the transcription start site. Gel retardation assay confirmed that DREAM bound to the CT-DRE and also indicated that DREAM bound to the DRE in a Ca2+-dependent manner. We generated stable transfectants of TT cells with wild-type or mutant DREAM, which lacked the responsiveness to Ca2+ changes. In contrast to the wild type, overexpression of the mutant DREAM inhibited the increase in CT secretion induced by a calcium ionophore. The addition of forskolin to increase cAMP activated the CT promoter, probably by the interaction of DREAM with cAMP-responsive element binding proteins, independent on the activation by Ca2+. Together, these results suggest that DREAM plays an important role in human CT gene expression in a Ca2+- and cAMP-dependent manner.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1835-1835
Author(s):  
Chirag Acharya ◽  
Mike Y Zhong ◽  
Yolanda Calle ◽  
Stephen Schey ◽  
Michelle Chen ◽  
...  

Abstract Abstract 1835 Blocking CRM1 by novel selective inhibitors of nuclear export (SINE: KPT-185, KPT-251, KPT-276, and KPT-330) induced potent MM cell apoptosis in vitro and in vivo (Abstract #46829). In addition, these compounds inhibited NFkB p65 DNA-binding activity in MM cells. Here, we investigated whether SINEs have effects on bone and whether this is mediated only through anti-MM activity, or additional effects directly on osteoclasts (OC) are in play. We asked whether SINEs could prevent RANKL/M-CSF-induced osteoclastogenesis via blockade of NFkB activation. Mature OC (TRAP+ multinucleated cell) were derived from the CD138-negative cell fraction from MM patient samples (n=4) stimulated with RANKL/M-CSF for 3 weeks, in the presence or absence of KPT-185. KPT-185 significantly blocked formation of TRAP+ multinucleated OC in a dose-dependent manner, further confirmed by reduction of the selective osteoclastic marker TRAP5b in cell culture supernatant. NFkB p65 activity was induced in nuclear extracts of CD14+ OC precursor cells following RANKL stimulation for 30 min. Importantly, KPT-185 and KPT-330 blocked such induction in a dose-dependent manner. When KPT-185 was added 2 weeks following OC differentiation by RANKL/M-CSF, the effects of KPT-185 on osteoclast culture were not as prominent as when drug was added from the onset. Immunofluorescence staining to examine the actin cytoskeleton in OC cultures performed on glass cover slips further confirmed that actin belt formation in mature OCs is required for bone resorption activity. In the presence of KPT-185 or KPT-330, such critical structure was significantly decreased, consistent with diminished mature OC number and reduced TRAP5b. Pit formation assays on dentine slices clearly showed that KPT-185 and KPT-330, as low as 10 nM, inhibited % erosion area when compared with control group (p<0.005). In RANKL-activated preosteoclasts, both compounds further blocked expression levels of NFATC1, the key osteoclast differentiation transcription factor, as well as fusion-related (Atp6v0d2 and DC-STAMP) and adhesion (integrin αv and integrin β3) molecules. We also assessed the effect of SINE on osteogenesis derived from mesenchymal stem cells of normal healthy donors (n=3). Neither KPT-276 nor KPT-330 blocked calcium deposition, an indicator of bone formation in in vitro culture. Moreover, KPT-185 did not alter INA6 MM cell-inhibited calcium deposition of osteoblasts. Thus, SINEs specifically blocked osteoclast formation and bone resorption activity without significantly impacting osteogenesis. This is the first study to demonstrate a novel role of CRM1 regulating osteoclast formation at least in part by blocking NFkB activity triggered in osteoclast precursor cells by RANKL stimulation. Decreased NFkB p65 activity essential for osteoclast differentiation and fusion was associated with suppressed bone resorption. The potent MM cytotoxicity and prolonged host survival (p=0.0004) demonstrated in our disseminated SCID mouse model of human MM (Abstract#46829), coupled with these bone effects, provide the framework for clinical trials targeting CRM1 with SINEs to simultaneously inhibit both tumor progression and bone destruction in MM. Disclosures: Ghobrial: Millennium pharmaceuticals Inc.: Membership on an entity's Board of Directors or advisory committees; Onyx: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Landesman:Karyopharm Therapeutics Inc: Employment. Shacham:Karyopharm Therapeutics: Employment. Kauffman:Karyopharm Therapeutics Inc: Employment. Anderson:Celgene, Millennium, BMS, Onyx: Membership on an entity's Board of Directors or advisory committees; Acetylon, Oncopep: Scientific Founder, Scientific Founder Other.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 199
Author(s):  
Urara Tanaka ◽  
Shunichi Kajioka ◽  
Livia S. Finoti ◽  
Daniela B. Palioto ◽  
Denis F. Kinane ◽  
...  

DNA methylation controls several inflammatory genes affecting bone homeostasis. Hitherto, inhibition of DNA methylation in vivo in the context of periodontitis and osteoclastogenesis has not been attempted. Ligature-induced periodontitis in C57BL/6J mice was induced by placing ligature for five days with Decitabine (5-aza-2′-deoxycytidine) (1 mg/kg/day) or vehicle treatment. We evaluated bone resorption, osteoclast differentiation by tartrate-resistant acid phosphatase (TRAP) and mRNA expression of anti-inflammatory molecules using cluster differentiation 14 positive (CD14+) monocytes from human peripheral blood. Our data showed that decitabine inhibited bone loss and osteoclast differentiation experimental periodontitis, and suppressed osteoclast CD14+ human monocytes; and conversely, that it increased bone mineralization in osteoblastic cell line MC3T3-E1 in a concentration-dependent manner. In addition to increasing IL10 (interleukin-10), TGFB (transforming growth factor beta-1) in CD14+ monocytes, decitabine upregulated KLF2 (Krüppel-like factor-2) expression. Overexpression of KLF2 protein enhanced the transcription of IL10 and TGFB. On the contrary, site-directed mutagenesis of KLF2 binding site in IL10 and TFGB abrogated luciferase activity in HEK293T cells. Decitabine reduces bone loss in a mouse model of periodontitis by inhibiting osteoclastogenesis through the upregulation of anti-inflammatory cytokines via KLF2 dependent mechanisms. DNA methyltransferase inhibitors merit further investigation as a possible novel therapy for periodontitis.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1982
Author(s):  
Wataru Ariyoshi ◽  
Shiika Hara ◽  
Ayaka Koga ◽  
Yoshie Nagai-Yoshioka ◽  
Ryota Yamasaki

Although the anti-tumor and anti-infective properties of β-glucans have been well-discussed, their role in bone metabolism has not been reviewed so far. This review discusses the biological effects of β-glucans on bone metabolisms, especially on bone-resorbing osteoclasts, which are differentiated from hematopoietic precursors. Multiple immunoreceptors that can recognize β-glucans were reported to be expressed in osteoclast precursors. Coordinated co-stimulatory signals mediated by these immunoreceptors are important for the regulation of osteoclastogenesis and bone remodeling. Curdlan from the bacterium Alcaligenes faecalis negatively regulates osteoclast differentiation in vitro by affecting both the osteoclast precursors and osteoclast-supporting cells. We also showed that laminarin, lichenan, and glucan from baker’s yeast, as well as β-1,3-glucan from Euglema gracilisas, inhibit the osteoclast formation in bone marrow cells. Consistent with these findings, systemic and local administration of β-glucan derived from Aureobasidium pullulans and Saccharomyces cerevisiae suppressed bone resorption in vivo. However, zymosan derived from S. cerevisiae stimulated the bone resorption activity and is widely used to induce arthritis in animal models. Additional research concerning the relationship between the molecular structure of β-glucan and its effect on osteoclastic bone resorption will be beneficial for the development of novel treatment strategies for bone-related diseases.


2021 ◽  
Vol 22 (9) ◽  
pp. 4717
Author(s):  
Jin-Young Lee ◽  
Da-Ae Kim ◽  
Eun-Young Kim ◽  
Eun-Ju Chang ◽  
So-Jeong Park ◽  
...  

Lumican, a ubiquitously expressed small leucine-rich proteoglycan, has been utilized in diverse biological functions. Recent experiments demonstrated that lumican stimulates preosteoblast viability and differentiation, leading to bone formation. To further understand the role of lumican in bone metabolism, we investigated its effects on osteoclast biology. Lumican inhibited both osteoclast differentiation and in vitro bone resorption in a dose-dependent manner. Consistent with this, lumican markedly decreased the expression of osteoclastogenesis markers. Moreover, the migration and fusion of preosteoclasts and the resorptive activity per osteoclast were significantly reduced in the presence of lumican, indicating that this protein affects most stages of osteoclastogenesis. Among RANKL-dependent pathways, lumican inhibited Akt but not MAP kinases such as JNK, p38, and ERK. Importantly, co-treatment with an Akt activator almost completely reversed the effect of lumican on osteoclast differentiation. Taken together, our findings revealed that lumican inhibits osteoclastogenesis by suppressing Akt activity. Thus, lumican plays an osteoprotective role by simultaneously increasing bone formation and decreasing bone resorption, suggesting that it represents a dual-action therapeutic target for osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document