scholarly journals Numerical investigation of the cold-formed I-beams bending strength with different web shapes

2021 ◽  
Vol 16 (59) ◽  
pp. 153-171
Author(s):  
Nadia Kouider ◽  
Yazid Hadidane ◽  
Mohammed Benzerara

The wide use of cold-formed sections (CFS) in the field of steel constructions, favored by the multiple advantages they offer (lightness, ease of installation, etc.), has led us to reflect on a new process for manufacture of metal beams allowing the design of very large span hangars and a reduction in instability problems. This paper presents a study of the theoretical and numerical behavior of a large span CFS beam with different webs, a solid web, a triangular corrugated web, and a trapezoidal corrugated web. These beams are stressed by a concentrated bending load at mid-span. Numerical modeling was done using the finite element software ABAQUS. The results were validated with those theoretically found, based on the effective width method adopted in standard EN1993-1-3. The load capacity and failure modes of the beams were discussed. According to numerical and analytical analysis, corrugated web beams perform better than all other sections.

Author(s):  
Muhammad A. Wahab ◽  
Prashanth Ramachandran ◽  
Su-Seng Pang ◽  
Randy A. Jones

This paper discusses an experimental and numerical study to investigate the failure behavior of non-conventional cross-sectioned fiber reinforced composite pipes filled with glass beads subjected to internal pressure and bending loads. An adaptive filament winder for non-conventional pipes was exclusively designed to fabricate the samples used in the experiments. Experiments were conducted on triangular and rectangular cross-sectioned samples as per ASTM standards to find the internal burst pressure, bending strength, and failure modes of the pipes. Numerical analysis for the pipe loading process has been developed based on the finite element method for a linear orthotropic problem for composite pipes. The finite element software ANSYS was used to build the model and predict the stresses imposed on the pipes. The relationships between the applied internal pressure and peak hoop stress, bending load, and bending strength with reference to the fillet radius were determined; and generally a good correlation was found between the experimental and numerical results.


2013 ◽  
Vol 19 (5) ◽  
pp. 705-717 ◽  
Author(s):  
Alireza Bahrami ◽  
Wan Hamidon Wan Badaruzzaman ◽  
Siti Aminah Osman

This paper focuses on the performance of a special kind of tapered composite columns, namely tapered concrete-filled steel composite (TCFSC) slender columns, under axial loading. These efficient TCFSC columns are formed by the increase of the mid-height depth and width of straight concrete-filled steel composite (CFSC) slender columns, that is, by the enhancement of the tapered angle (from 0° to 2.75°) of the tapered composite columns from their top and bottom to their mid-height. To investigate the performance of the columns, finite element software LUSAS is employed to carry out the nonlinear analyses. Comparisons of the nonlinear finite element results with the existing experimental results uncover the reasonable accuracy of the proposed modelling. Nonlinear analyses are extensively performed and developed to study effects of different variables such as various tapered angles, steel wall thicknesses, concrete compressive strengths, and steel yield stresses on the performance of the columns. It is concluded that increasing each of these variables considerably enhances the ultimate axial load capacity. Also, enhancement of the tapered angle and/or steel wall thickness significantly improves the ductility. Moreover, confinement effect of the steel wall on the performance of the columns is evaluated. Failure modes of the columns are also presented.


2019 ◽  
Vol 70 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Andrzej Makowski

The study presents methods for accurate estimation of bending stresses in the 3-point flexural bending test of plywood, i.e. a wood-based laminate with an alternate crosswise ply configuration. The characteristic bending strength (MOR) and mean modulus of elasticity (MOE) of standard beech plywood was determined using European Standard bending tests EN 310. Correlations were determined between empirically determined bending moduli of the plywood and material moduli of the veneer layer. Calculations were conducted based on the classical plate theory for thin panels comprising the theory of elasticity including the Kirchhoff-Love hypothesis. Rigidity of individual layer was established theoretically in the axial configuration of transformed rigidity matrix values. Numerical laminate models were developed and simulation tests were conducted. Results of experimental and analytical studies were verified using the Finite Element Method (FEM). Analyses were performed in two plywood cross-band arrangement variants. An analysis of the distribution of stresses in individual layers of plywood used an analytical and numerical method assuming the plywood specimen to be a rhombic-anisotropic material. It was found that the bending load capacity of plywood depends on the configuration of individual layers (veneers). Values of stresses originating from bending do not only depend on the distance of the considered plywood layer from the middle layer but also on stiffness in the direction of operating stresses. Bending strength varies in individual directions of the plywood panel. Therefore, the distribution of stresses in individual layers differs from that resulting from the stress distribution for homogeneous isotropic materials. Results are presented in the form of tables, bitmaps, graphs and photographs. The tests were conducted based on the BFU-BU-18 standard beech plywood thickness of 18 mm.


2012 ◽  
Vol 490-495 ◽  
pp. 3444-3448
Author(s):  
Peng Wang ◽  
Dan Lv ◽  
Guo Qiang Liu

Based on the requirements of load test technique on existing long-span concrete bridge, a deck arch bridge of large-span reinforced concrete was taken as the engineering background and the emulation analysis was done by building the bridge model using the finite element software Midas/Civil. The values of stress and deflection were measured and calculated. The results of the test show that the static working performance of the arch bridge is fine, the stiffness and load capacity meet the requirements of the design and the construction quality is good. It can provide references for the bridge design of the same type, learning about the actual working condition of the bridge and evaluating the working performance and load capacity of the bridge structure in the serviceability limit states.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Meng Zou ◽  
Jiafeng Song ◽  
Shucai Xu ◽  
Shengfu Liu ◽  
Zhiyong Chang

This study conducted quasistatic three-point bending tests to investigate the effect of bamboo node on the energy absorption, bending, and deformation characteristics of bamboo. Results showed that the node had a reinforcing effect on the energy absorption and bending strength of the bamboo culm subjected to bending load. The experimental results demonstrated that nodal samples (NS) significantly outperform internodal samples without node (INS). Under the three-point bending load, the main failure mode of bamboo is the fracture failure. The node also showed split and fracture prevention function obviously. Based on that, a series of bionic bumper beams were designed inspired by the bamboo node. The FEM results indicated that the performance of bionic bumpers was better than that of a normal bumper with regard to bending strength, energy absorption, and being lightweight. In particular, the bionic bumper beam has the best performance with regard to bending, energy absorption, and being lightweight compared with the normal bumper under pole impact. The characteristic of the bionic bumper beam is higher than that of the normal bumper beam by 12.3% for bending strength, 36.9% for EA, and 31.4% for SEA; moreover, there was a mass reduction of 4.9%, which still needs further optimization.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Niall Holmes ◽  
Darran Kierans ◽  
Patrick Crean

The paper presents a new method of stiffening CHS L-joints and compares it against current stiffened and unstiffened moment connections. The method is derived from studying the failure modes of existing methods, typically local buckling and ovalisation of the section. Unstiffened right-angled CHS connections have been shown to be weak due to local buckling and ovalisation. Stiffing plates placed across the joint can increase the moment capacity of the section by preventing ovalisation of the section but is architecturally unsightly. An alternative approach, where a stiffening plate welded vertically inside both the column and beam, outperformed the unstiffened frame plate in terms of reduced ovalisation and increased load capacity. It was also found to perform better than the stiffened connection in terms of both vertical and horizontal deflection. However, more research is required to ensure a fully restrained connection to satisfy codes of practice and constructible.


2010 ◽  
Vol 163-167 ◽  
pp. 299-306 ◽  
Author(s):  
Xiu Li Wang ◽  
Wen Wei Yang ◽  
Lei Zou

The question whether hidden weld of unstiffened overlapped CHS (circular hollow sections) KK-joints is welded or un-welded is not clearly mentioned in China's steel structure design codes (GB50017-2003) .This paper mainly analyzes the influence of chord-to-brace diameter ratio β, diameter-to- ply ratio γ and brace-to-chord ply ratio τ to the ultimate bearing capacity of the joints with the hidden weld welded and un-welded. The influence of welded and un-welded hidden welds of the joints on hysteretic behavior under low frequency loading is analyzed , and hysteretic curve of the joints are obtained by the finite element software ANSYS. Side brace or opposite brace of the hidden weld of the joints has little influence on the failure modes and ultimate capacity of the joints. Hysteretic behavior of the joints with the hidden weld un-welded is much better than that of the welded.


2018 ◽  
Vol 15 (1) ◽  
pp. 15
Author(s):  
AMIR SYAFIQ SAMSUDIN ◽  
MOHD HISBANY MOHD HASHIM ◽  
SITI HAWA HAMZAH ◽  
AFIDAH ABU BAKAR

Nowadays, demands in the application of fibre in concrete increase gradually as an engineering material. Rapid cost increment of material causes the increase in demand of new technology that provides safe, efficient and economical design for the present and future application. The introduction of ribbed slab reduces concrete materials and thus the cost, but the strength of the structure also reduces due to the reducing of material. Steel fibre reinforced concrete (SFRC) has the ability to maintain a part of its tensile strength prior to crack in order to resist more loading compared to conventional concrete. Meanwhile, the ribbed slab can help in material reduction. This research investigated on the bending strength of 2-ribbed and 3-ribbed concrete slab with steel fibre reinforcement under static loading with a span of 1500 mm and 1000 mm x 75 mm in cross section. An amount of 40 kg/m steel fibre of all total concrete volume was used as reinforcement instead of conventional bars with concrete grade 30 N/mm2. The slab was tested under three-point bending. Load versus deflection curve was plotted to illustrate the result and to compare the deflection between control and ribbed slab. This research shows that SFRC Ribbed Slab capable to withstand the same amount of load as normal slab structure, although the concrete volume reduces up to 20%.


Author(s):  
Nicholas Haritos ◽  
Anil Hira ◽  
Priyan Mendis ◽  
Rob Heywood ◽  
Armando Giufre

VicRoads, the road authority for the state of Victoria, Australia, has been undertaking extensive research into the load capacity and performance of cast-in-place reinforced concrete flat slab bridges. One of the key objectives of this research is the development of analytical tools that can be used to better determine the performance of these bridges under loadings to the elastic limit and subsequently to failure. The 59-year-old Barr Creek Bridge, a flat slab bridge of four short continuous spans over column piers, was made available to VicRoads in aid of this research. The static testing program executed on this bridge was therefore aimed at providing a comprehensive set of measurements of its response to serviceability level loadings and beyond. This test program was preceded by the performance of a dynamic test (a simplified experimental modal analysis using vehicular excitation) to establish basic structural properties of the bridge (effective flexural rigidity, EI) and the influence of the abutment supports from identification of its dynamic modal characteristics. The dynamic test results enabled a reliably tuned finite element model of the bridge in its in-service condition to be produced for use in conjunction with the static testing program. The results of the static testing program compared well with finite element modeling predictions in both the elastic range (serviceability loadings) and the nonlinear range (load levels taken to incipient collapse). Observed collapse failure modes and corresponding collapse load levels were also found to be predicted well using yield line theory.


Sign in / Sign up

Export Citation Format

Share Document