scholarly journals Storage and Flux of Nutrients in Disturbed and Undisturbed Tropical Moist Forest of Eastern Nepal

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Tilak Prasad Gautam ◽  
Tej Narayan Mandal

The disturbance activities in tropical forests shrink the nutrient cycling between the vegetation and soil. To understand the nutrient cycling in undisturbed and disturbed stands of mixed deciduous tropical forest of eastern Nepal, plant biomass was estimated within seventy randomly established sampling plots. The biomass values were multiplied with nutrient concentration of respective parts to estimate the nutrient stocks. The nutrient concentrations varied widely amongst components. In trees, concentrations of all nutrients were highest in leaves followed in decreasing order by fine roots (<5 mm) and twigs and then by branches, bole, and coarse roots. The contribution of different components to total nutrient stocks was in the following order: tree > stand fine root > shrub > herb, in both stands. The relative contribution of different components of trees to total nutrient stocks was in the following order: bole > coarse root > branch > leaf > twig > fine roots. In trees, leaves and fine roots had greater gross uptake of nutrients than other components. The concentrations of different nutrients in the plants are in the following order: nitrogen > potassium > phosphorus. Total nutrient return to the soil through the litterfall is almost 1.5 times greater than that from fine roots in both forests. In conclusion, various types of forest disturbances had adverse effect on the nutrient stocks and nutrient dynamics.

2007 ◽  
Vol 23 (3) ◽  
pp. 319-328 ◽  
Author(s):  
Nathalie Soethe ◽  
Johannes Lehmann ◽  
Christof Engels

Carbon and nutrient stocks in below-ground biomass have rarely been investigated in tropical montane forests. In the present study, the amounts of carbon, nitrogen, phosphorus, sulphur, potassium, calcium and magnesium in root biomass were determined by soil coring and nutrient analysis in forests at three altitudes (1900, 2400 and 3000 m) in the Ecuadorian Andes. Root biomass increased markedly from 2.8 kg m−2 at 1900 m and 4.0 kg m−2 at 2400 to 6.8 kg m−2 at 3000 m. The contribution of coarse roots (> 2 mm in diameter) to total root biomass increased from about 70% at 1900 m to about 80% at higher altitudes. In fine roots (≤ 2 mm in diameter), concentrations of nutrients except calcium markedly decreased with altitude. Therefore, the nutrient stocks in fine roots were similar at 1900 m and 3000 m for nitrogen and sulphur, and were even lower at higher altitudes for phosphorus, potassium and magnesium. In coarse roots of Graffenrieda emarginata concentrations of nutrients were substantially lower than in fine roots, and were little affected by altitude. The data suggest that the importance of coarse roots for long-term carbon and nutrient accumulation in total plant biomass increases with increasing altitude.


2021 ◽  
Author(s):  
Victor Burgeon ◽  
Julien Fouché ◽  
Sarah Garré ◽  
Ramin Heidarian-Dehkordi ◽  
Gilles Colinet ◽  
...  

&lt;p&gt;The amendment of biochar to soils is often considered for its potential as a climate change mitigation and adaptation tool through agriculture. Its presence in tropical agroecosystems has been reported to positively impact soil productivity whilst successfully storing C on the short&amp;#8201;and long-term. In temperate systems, recent research showed limited to no effect on productivity following recent biochar addition to soils. Its long-term effects on productivity and nutrient cycling have, however, been overlooked yet are essential before the use of biochar can be generalized.&lt;/p&gt;&lt;p&gt;Our study was set up in a conventionally cropped field, containing relict charcoal kiln sites used as a model for century old biochar (CoBC, ~220 years old). These sites were compared to soils amended with recently pyrolyzed biochar (YBC) and biochar free soils (REF) to study nutrient dynamics in the soil-water-plant system. Our research focused on soil chemical properties, crop nutrient uptake and soil solution nutrient concentrations. Crop plant samples were collected over three consecutive land occupations (chicory, winter wheat and a cover crop) and soil solutions gathered through the use of suctions cups inserted in different horizons of the studied Luvisol throughout the field.&lt;/p&gt;&lt;p&gt;Our results showed that YBC mainly influenced the soil solution composition whereas CoBC mainly impacted the total and plant available soil nutrient content. In soils with YBC, our results showed lower nitrate and potassium concentrations in subsoil horizons, suggesting a decreased leaching, and higher phosphate concentrations in topsoil horizons. With time and the oxidation of biochar particles, our results reported higher total soil N, available K and Ca in the topsoil horizon when compared to REF, whereas available P was significantly smaller. Although significant changes occurred in terms of plant available nutrient contents and soil solution nutrient concentrations, this did not transcend in variations in crop productivity between soils for neither of the studied crops. Overall, our study highlights that young or aged biochar behave as two distinct products in terms of nutrient cycling in soils. As such the sustainability of these soils differ and their management must therefore evolve with time.&lt;/p&gt;


2012 ◽  
Vol 42 (11) ◽  
pp. 1939-1952 ◽  
Author(s):  
John E. Major ◽  
Kurt H. Johnsen ◽  
Debby C. Barsi ◽  
Moira Campbell

Total belowground biomass, soil C, and N mass were measured in plots of 32-year-old black spruce ( Picea mariana (Mill.) Britton, Sterns & Poggenb.) from four full-sib families studied previously for drought tolerance and differential productivity on a dry and a wet site. Stump root biomass was greater on the wet than on the dry site; however, combined fine and coarse root biomass was greater on the dry than on the wet site, resulting in no site root biomass differences. There were no site differences in root distribution by soil depth. Drought-tolerant families had greater stump root biomass and allocated relatively less to combined coarse and fine roots than drought-intolerant families. Fine roots (<2 mm) made up 10.9% and 50.2% of the belowground C and N biomass. Through 50 cm soil depth, mean total belowground C mass was 187.2 Mg·ha–1, of which 8.9%, 3.4%, 0.7%, and 87.0% were from the stump root, combined fine and coarse roots, necromass, and soil, respectively. Here, we show that belowground C sequestration generally mirrors (mostly from stump roots) aboveground growth, and thus, trends in genetic and genetic × environment productivity effects result in similar effects on belowground C sequestration. Thus, tree improvement may well be an important avenue to help stem increases in atmospheric CO2.


Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 676 ◽  
Author(s):  
Zhang ◽  
Stratopoulos ◽  
Pretzsch ◽  
Rötzer

In the context of climate change, drought is likely to become more frequent and more severe in urban areas. Urban trees are considered to play an important role in fixing carbon, improving air quality, reducing noise and providing other ecosystem services. However, data on the response of urban trees to climate change, particularly to drought, as well as the relationship between their below- and above-ground processes in this context, are still limited, which prevents a comprehensive understanding of the role of urban trees in ameliorating some of the adverse effects of climate change and their ability to cope with it. To investigate whole-plant responses to water shortages, we studied the growth of Tilia cordata Greenspire, a commonly planted urban tree, including development of its roots and stem diameter, leaf parameters and the harvested biomass. Our results showed that this cultivar was susceptible to drought and had reduced biomass in all three compartments: branch (30.7%), stem (16.7%) and coarse roots (45.2%). The decrease in the root:shoot ratio under drought suggested that more carbon was invested in the above-ground biomass. The development of fine roots and the loss of coarse root biomass showed that T. cordata Greenspire prioritised the growth of fine roots within the root system. The CityTree model’s simulation showed that the ability of this cultivar to provide ecosystem services, including cooling and CO2 fixation, was severely reduced. For use in harsh and dry urban environments, we recommend that urban managers take into account the capacity of trees to adapt to drought stress and provide sufficient rooting space, especially vertically, to help trees cope with drought.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1271
Author(s):  
Zhen’an Yang ◽  
Zhibin Luo

As essential nutrients for plant growth and development, the balance of nitrogen (N) and phosphorus (P) between soils and plants is a key component to ecosystem stability. In this study, we examined the distribution of nutrients in the soils and different organs of Chinese fir (Cunninghamia lanceolata) in Hunan Province, southern China. Additionally, we investigated the nutrient concentrations in soil layers (0–80 cm depth) and in plant organs, and the total biomass of 10-, 20-, and 30-year-old plantations. The results suggested that the nutrients in the soil were aggregated in the surface layer. The highest and lowest values of N concentrations in 0–80 cm soil layers and P concentrations in 0–40 cm soil layers were both in 30-year-old plantations and 20-year-old plantations, respectively. Nitrogen in the organs of Chinese fir in all plantations and P concentrations in the organs of 20- and 30-year-old trees decreased in the following order: leaves, fine roots, coarse roots, and stems. Total biomass (N and P pools of four organs) increased consistently with stand age increase, and N and P pools were the highest in leaves and stems, respectively. There were significant, positive correlations between N and P in the soil (0–80 cm), and organs, respectively, and also between N concentrations of fine roots and that of 0–10 and 10–20 cm soil, respectively. In Chinese fir plantations, concentrations of nutrients in specific tree organs and the soil were correlated positively, which can only partially explain the balance of nutrients within the plant–soil ecosystem. This study suggested that incorrect harvesting patterns may effectively deprive the forest ecosystem of valuable nutrients that would ordinarily have been returned to the soil.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Serdar Akburak ◽  
Ender Makineci

Abstract Background Thinning is a commonly used treatment in forest management which affects the tree root systems. The effects of thinning on element concentrations and seasonal change of roots were evaluated in adjacent oak (Quercus frainetto Ten.) and hornbeam (Carpinus betulus L.) stands according to the different root diameter classes. Method Two replicated control and thinning plots (50 m × 50 m) were set for each species (hornbeam and oak). Thinning treatments (November 2010) reduced 50% of the basal area in both oak and hornbeam stands. Roots were assessed by seasonal collection over 2 years (from October 2010 to October 2012). The roots were then sorted into diameter classes of 0–2 mm (fine roots), 2–5 mm (small roots) and > 5 mm (coarse roots). C, N, P, K, Ca, Na, Mg, S, Mn, Fe, Al, Zn, Pb, Ni, Cu and Cd were analyzed. Results Except coarse roots, the highest root biomasses were determined in April-2011 in all plots. Fine-root biomass in oak was found significantly higher in control plots. In contrast to the oak, the fine-root biomass in the thinned hornbeam plots was higher than in the controls. The small-root biomass did not significantly differ between the thinned and the control plots in both oak and hornbeam stands. However, the coarse-root biomass showed significant differences between the control (1989 g∙m− 2) and thinned plots (1060 g∙m− 2) in oak, while no difference was detected in hornbeam. The concentrations of C, Al, Pb, Cd, Ni, Zn, Mn, Na, K, Mg and P in the fine roots of oak were significantly higher in the thinned plots. However, the concentration of Pb, Cd and Fe in the fine roots was significantly higher in the thinned plots of hornbeam. Significant differences were observed between the species for all elements in the fine roots except for C, N and P. In particular, elements in the fine roots tended to increase in July in the oak. In the hornbeam, all element concentrations in the fine roots (except C, N, and S) in the thinned plots showed a tendency to increase in April. The concentrations of Pb, Ni, Al, Fe, Cu, Ca, Na, K, Mg and P in the hornbeam control plots increased during the April 2011 period. Conclusion The results indicated that thinning effects on temporal changes and concentrations of elements in the roots could be attributed to species-specific characteristics.


2020 ◽  
Author(s):  
Tongrui Zhang ◽  
Frank Yonghong Li ◽  
Hao Wang ◽  
Lin Wu ◽  
Chunjun Shi ◽  
...  

Abstract Aims Nutrient resorption is a key plant nutrient conservation strategy, and its response to environmental and management changes is linked to nutrient cycling and production of ecosystems. Defoliation is a major pathway of mowing affecting plant nutrient resorption and production in grasslands, while the effect of defoliation timing has not been unexplored. The aim of this study was to examine the effect of defoliation timing on plant nutrient resorption and production in a steppe ecosystem. Methods We conducted a field experiment in a semi-arid steppe of Inner Mongolia including four treatments: early defoliation, peak defoliation, late defoliation and non-defoliation. We measured plant nitrogen (N) and phosphorus (P) resorption at species and community levels, and quantified plant N and P fluxes in resorption, litter return and hay output. Plant production in the mowing system was assessed by hay production and quality. Important Findings Peak and late defoliation, but not early defoliation, reduced plant community N and P resorption proficiency (RP); and late defoliation reduced N resorption efficiency (RE) but not P resorption efficiency. Peak and late defoliation, but not early defoliation, reduced plant nutrient resorption flux and litter nutrient return flux. Defoliation timing did not alter root nutrient accumulation as nutrient uptake from soil likely compensated the deficit of nutrient resorption. Peak defoliation had the highest hay production and quality, while early defoliation had the lowest. Our results provide new insights into the nutrient cycling in mowing grassland, and imply that the mowing timing can be used as a tool to mediate the balance between conservation and production of steppes, and the early mowing before plant peak biomass period is recommended for conservation of the steppes while keeping sustainable pastoral production.


2021 ◽  
Vol 13 (11) ◽  
pp. 6221
Author(s):  
Muyuan Ma ◽  
Yaojun Zhu ◽  
Yuanyun Wei ◽  
Nana Zhao

To predict the consequences of environmental change on the biodiversity of alpine wetlands, it is necessary to understand the relationship between soil properties and vegetation biodiversity. In this study, we investigated spatial patterns of aboveground vegetation biomass, cover, species diversity, and their relationships with soil properties in the alpine wetlands of the Gannan Tibetan Autonomous Prefecture of on the Qinghai-Tibetan Plateau, China. Furthermore, the relative contribution of soil properties to vegetation biomass, cover, and species diversity were compared using principal component analysis and multiple regression analysis. Generally, the relationship between plant biomass, coverage, diversity, and soil nutrients was linear or unimodal. Soil pH, bulk density and organic carbon were also significantly correlated to plant diversity. The soil attributes differed in their relative contribution to changes in plant productivity and diversity. pH had the highest contribution to vegetation biomass and species richness, while total nitrogen was the highest contributor to vegetation cover and nitrogen–phosphorus ratio (N:P) was the highest contributor to diversity. Both vegetation productivity and diversity were closely related to soil properties, and soil pH and the N:P ratio play particularly important roles in wetland vegetation biomass, cover, and diversity.


1986 ◽  
Vol 64 (12) ◽  
pp. 2993-2998 ◽  
Author(s):  
Steven F. Oberbauer ◽  
Nasser Sionit ◽  
Steven J. Hastings ◽  
Walter C. Oechel

Three Alaskan tundra species, Carex bigelowii Torr., Betula nana L., and Ledum palustre L., were grown in controlled-environment chambers at two nutrition levels with two concentrations of atmospheric CO2 to assess the interactive effects of these factors on growth, photosynthesis, and tissue nutrient content. Carbon dioxide concentrations were maintained at 350 and 675 μL L−1 under photosynthetic photon flux densities of 450 μmol m−2 s−1 and temperatures of 20:15 °C (light:dark). Nutrient treatments were obtained by watering daily with 1/60- or 1/8- strength Hoagland's solution. Leaf, root, and total biomass were strongly enhanced by nutrient enrichment regardless of the CO2 concentration. In contrast, enriched atmospheric CO2 did not significantly affect plant biomass and there was no interaction between nutrition and CO2 concentration during growth. Leaf photosynthesis was increased by better nutrition in two species but was unchanged by CO2 enrichment during growth in all three species. The effects of nutrient addition and CO2 enrichment on tissue nutrient concentrations were complex and differed among the three species. The data suggest that CO2 enrichment with or without nutrient limitation has little effect on the biomass production of these three tundra species.


Sign in / Sign up

Export Citation Format

Share Document