scholarly journals Cosmic Evolution of Holographic Dark Energy in f(G,T) Gravity

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
M. Sharif ◽  
Ayesha Ikram

The aim of this paper is to analyze the cosmological evolution of holographic dark energy in f(G,T) gravity (G and T represent the Gauss-Bonnet invariant and trace of the energy-momentum tensor, respectively). We reconstruct f(G,T) model through correspondence scheme using power-law form of the scale factor. The qualitative analysis of the derived model is investigated with the help of evolutionary trajectories of equation of state and deceleration as well as state-finder diagnostic parameters and ωGT-ωGT′ cosmological phase plane. It is found that the equation of state parameter represents phantom epoch of the Universe whereas the deceleration parameter illustrates the accelerated phase. The state-finder plane corresponds to Chaplygin gas model while the freezing region is attained in ωGT-ωGT′ plane.

2014 ◽  
Vol 29 (02) ◽  
pp. 1450015 ◽  
Author(s):  
M. SHARIF ◽  
SHAMAILA RANI

This paper is devoted to study the power-law entropy corrected holographic dark energy (ECHDE) model in the framework of f(T) gravity. We assume infrared (IR) cutoff in terms of Granda–Oliveros (GO) length and discuss the constructed f(T) model in interacting as well as in non-interacting scenarios. We explore some cosmological parameters like equation of state (EoS), deceleration, statefinder parameters as well as ωT–ωT′ analysis. The EoS and deceleration parameters indicate phantom behavior of the accelerated expansion of the universe. It is mentioned here that statefinder trajectories represent consistent results with ΛCDM limit, while evolution trajectory of ωT–ωT′ phase plane does not approach to ΛCDM limit for both interacting and non-interacting cases.


2019 ◽  
Vol 28 (06) ◽  
pp. 1950077 ◽  
Author(s):  
M. Sharif ◽  
Saadia Saba

In this paper, we explore the reconstruction paradigm for generalized ghost pilgrim dark energy model with [Formula: see text] gravity ([Formula: see text] is the Gauss–Bonnet invariant and [Formula: see text] is the trace of the energy–momentum tensor) depending upon the speculation of black hole-free universe. To accomplish this, we adopt correspondence scheme for dust fluid configuration with flat Friedmann-Robertson-Walker (FRW) universe. The cosmic behavior of reconstructed models is examined through cosmological diagnostic parameters and phase planes. It is found that the deceleration parameter indicates accelerated phase while equation-of-state parameter represents phantom regime for some specific range of free parameters. The squared speed of sound parameter gives stable models for analyzing evolutionary paradigm of the universe. The trajectories of [Formula: see text]–[Formula: see text] plane gives thawing region, whereas [Formula: see text]–[Formula: see text] phase plane corresponds to Chaplygin gas model. We conclude that the resulting model represents self-consistent phantom-like universe for [Formula: see text] cannot be fraction) as well as stable generalized ghost pilgrim dark energy [Formula: see text] model.


Symmetry ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 92 ◽  
Author(s):  
Muhammad Sharif ◽  
Saadia Saba

In this paper, we study the reconstruction paradigm for Tsallis holographic dark energy model using generalized Tsallis entropy conjecture with Hubble horizon in the framework of f ( G , T ) gravity (G and T represent the Gauss-Bonnet invariant and trace of the energy-momentum tensor). We take the flat Friedmann-Robertson-Walker universe model with dust fluid configuration. The cosmological evolution of reconstructed models is examined through cosmic diagnostic parameters and phase planes. The equation of the state parameter indicates phantom phase while the deceleration parameter demonstrates accelerated cosmic epoch for both conserved as well as non-conserved energy-momentum tensor. The squared speed of the sound parameter shows instability of the conserved model while stable non-conserved model for the entire cosmic evolutionary paradigm. The trajectories of the ω G T - ω G T ′ plane correspond to freezing as well as thawing regimes for the conserved and non-conserved scenario, respectively. The r - s plane gives phantom and quintessence dark energy epochs for conserved while Chaplygin gas model regime for the non-conserved case. We conclude that, upon the appropriate choice of the free parameters involved, the derived models demonstrate a self-consistent phantom universe behavior.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 635 ◽  
Author(s):  
Abdul Jawad ◽  
Kazuharu Bamba ◽  
Muhammad Younas ◽  
Saba Qummer ◽  
Shamaila Rani

The cosmic expansion phenomenon is being studied through the interaction of newly proposed dark energy models (Tsallis, Rényi and Sharma-Mittal holographic dark energy (HDE) models) with cold dark matter in the framework of loop quantum cosmology. We investigate different cosmic implications such as equation of state parameter, squared sound speed and cosmological plane (ω d - ω d ′ , ω d and ω d ′ represent the equation of state (EoS) parameter and its evolution, respectively). It is found that EoS parameter exhibits quintom like behavior of the universe for all three models of HDE. The squared speed of sound represents the stable behavior of Rényi HDE and Sharma-Mittal HDE at the latter epoch while unstable behavior for Tsallis HDE. Moreover, ω d - ω d ′ plane lies in the thawing region for all three HDE models.


2019 ◽  
Vol 34 (30) ◽  
pp. 1950184
Author(s):  
M. Umair Shahzad ◽  
Nadeem Azhar ◽  
Abdul Jawad ◽  
Shamaila Rani

The reconstruction scenario of well-established dark energy models such as pilgrim dark energy model and generalized ghost dark energy with Hubble horizon and [Formula: see text] models is being considered. We have established [Formula: see text] models and analyzed their viability through equation of state parameter and [Formula: see text] (where prime denotes derivative with respect to [Formula: see text]) plane. The equation of state parameter evolutes the universe in three different phases such as quintessence, vacuum and phantom. However, the [Formula: see text] plane also describes the thawing as well as freezing region of the universe. The recent observational data also favor our results.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
M. Sharif ◽  
M. Zubair

We develop the connection off(R)theory with new agegraphic and holographic dark energy models. The functionf(R)is reconstructed regarding thef(R)theory as an effective description for these dark energy models. We show the future evolution offand conclude that these functions represent distinct pictures of cosmological eras. The cosmological parameters such as equation of state parameter, deceleration parameter, statefinder diagnostic, andw−w′analysis are investigated which assure the evolutionary paradigm off.


2005 ◽  
Vol 14 (02) ◽  
pp. 355-362 ◽  
Author(s):  
H. Q. LU

Recent many physicists suggest that the dark energy in the universe might result from the Born–Infeld (B–I) type scalar field of string theory. The universe of B–I type scalar field with potential can undergo a phase of accelerating expansion. The corresponding equation of state parameter lies in the range of -1<ω<-⅓. The equation of state parameter of B–I type scalar field without potential lies in the range of 0≤ω≤1. We find that weak energy condition and strong energy condition are violated for phantom B–I type scalar field. The equation of state parameter lies in the range of ω<-1.


2013 ◽  
Vol 91 (4) ◽  
pp. 351-354 ◽  
Author(s):  
Antonio Pasqua ◽  
Surajit Chattopadhyay

In this paper, we have studied and investigated the behavior of a modified holographic Ricci dark energy (DE) model interacting with pressureless dark matter (DM) under the theory of modified gravity, dubbed logarithmic f(T) gravity. We have chosen the interaction term between DE and DM in the form Q = 3γHρm and investigated the behavior of the torsion, T, the Hubble parameter, H, the equation of state parameter, ωDE, the energy density of DE, ρDE, and the energy density contribution due to torsion, ρT, as functions of the redshift, z. We have found that T increases with the redshift, z, H increases with the evolution of the universe, ωDE has a quintessence-like behavior, and both energy densities increase going from higher to lower redshifts.


2008 ◽  
Vol 17 (03n04) ◽  
pp. 651-658 ◽  
Author(s):  
WINFRIED ZIMDAHL

Different models of the cosmic substratum which pretend to describe the present stage of accelerated expansion of the Universe, like the ΛCDM model or the Chaplygin gas, can be seen as special realizations of a holographic dark energy cosmology if the option of an interaction between pressureless dark matter and dark energy is taken seriously. The corresponding interaction strength parameter plays the role of a cosmological constant. Differences occur at the perturbative level. In particular, the pressure perturbations are intrinsically nonadiabatic.


2020 ◽  
Vol 12 (4) ◽  
pp. 569-574
Author(s):  
C. Sivakumar ◽  
R. Francis

A slightly different power law-scaling fits to the picture of our 13.7 billion years old flat universe which is expanding presently at 67 km/s/Mpc with an acceleration. The model which is an attempt to retain power-law scaling in the light of the accepted facts about the universe we are living in, has a constant effective equation of state parameter as the cosmic fluid is a solution of matter, radiation and dark energy. It is successful in explaining the acceleration of universe which the normal power law fails if the present Hubble parameter is 67 km/s/Mpc and age of the universe is 13.7 billion years, and it is free from the defect of singularity.


Sign in / Sign up

Export Citation Format

Share Document