scholarly journals A Three-Dimensional Strain Rosette Sensor Based on Graphene Composite with Piezoresistive Effect

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Zhiqiang Wu ◽  
Jun Wei ◽  
Rongzhen Dong ◽  
Hao Chen

Obtaining the internal stress and strain state of concrete to evaluate the safety and reliability of structures is the important purpose of concrete structural health monitoring. In this paper, a three-dimensional (3D) strain rosette sensor was designed and fabricated using graphene-based piezoresistive composite to measure the strains in concrete structures. The piezoresistive composite was prepared using reduced graphene oxide (RGO) as conductive filler, cellulose nanofiber (CNF) as dispersant and structural skeleton, and waterborne epoxy (WEP) as polymer matrix. The mechanical, electrical, and electromechanical properties of RGO-CNF/WEP composite were tested. The results show that the tensile strength, elastic modulus, and conductivity of the composite are greatly improved by the addition of RGO and CNF. The relative resistance change of composite films demonstrates high sensitivity to mechanical strain with gauge factors of 16-52. Within 4% strain, the piezoresistive properties of composites are stable with good linearity and repeatability. The sensing performance of the 3D strain rosette was tested. The measured strains are close to the actual strains of measure point in concrete, and the error is small. The RGO-CNF/WEP composite has excellent mechanical and piezoresistive properties, which enable the 3D strain rosette to be used as embedded sensor to measure the internal strain of concrete structures accurately.

2017 ◽  
Vol 742 ◽  
pp. 807-814 ◽  
Author(s):  
Christoph Doerffel ◽  
Ricardo Decker ◽  
Michael Heinrich ◽  
Jürgen Tröltzsch ◽  
Mirko Spieler ◽  
...  

Polymer matrix compounds based on piezo ceramic and electrically conducting particles within a thermoplastic matrix show distinctive piezoelectric and dielectric effects which can used for sensor applications. The electrical and mechanical properties can be adjusted in a wide range by varying the ratio of active filling particles and the matrix materials. The sensor effect of the compound is generated by the ceramic particles. A large ratio of piezo ceramic powder facilitates a high sensitivity. The electrical permittivity of the otherwise insulating matrix polymer can be adjusted by the amount of conductive filler. An aligned permittivity leads to a stronger electrical field in the ceramic particles. In contrast, too many conductive particles create a conductive network in the compound which short-circuits the sensors. The piezo ceramic compounds can be processed via micro injection molding for application as ceramic sensors. This offers a wide range of new sensor design variants, notably three-dimensional and highly complex geometries. However, there are two main demands for a highly sensitive sensor, which are conflicting. On the one hand the filler content of piezo ceramic particles in combination with electrical conductive carbon nanotubes must be very high, on the other hand the wall thickness should be as thin as possible. For filling cavities with a high aspect-ratio in an injection molding process, low viscosity polymer melts are necessary. These process characteristics conflict with the increasing viscosity by filling the melt with the particles. The sensor measuring area has to be designed as thin walled as possible. In order to overcome this obstacle a dynamically tempered mold design is applied to avoid solidification of the melt, before the mold is completely filled. The mold can be tempered by Peltier elements. The fully electric tempering is cleaner, more precise and more reliable than conventional water or oil tempering.


Author(s):  
Sukho Lee ◽  
John van den Biggelaar ◽  
Marc van Veenhuizen

Abstract Laser-based dynamic analysis has become a very important tool for analyzing advanced process technology and complex circuit design. Thus, many good reference papers discuss high resolution, high sensitivity, and useful applications. However, proper interpretation of the measurement is important as well to understand the failure behavior and find the root cause. This paper demonstrates this importance by describing two insightful case studies with unique observations from laser voltage imaging/laser voltage probing (LVP), optical beam induced resistance change, and soft defect localization (SDL) analysis, which required an in-depth interpretation of the failure analysis (FA) results. The first case is a sawtooth LVP signal induced by a metal short. The second case, a mismatched result between an LVP and SDL analysis, is a good case of unusual LVP data induced by a very sensitive response to laser light. The two cases provide a good reference on how to properly explain FA results.


Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 372 ◽  
Author(s):  
Jinjin Luan ◽  
Qing Wang ◽  
Xu Zheng ◽  
Yao Li ◽  
Ning Wang

To avoid conductive failure due to the cracks of the metal thin film under external loads for the wearable strain sensor, a stretchable metal/polymer composite film embedded with silver nanowires (AgNWs) was examined as a potential candidate. The combination of Ag film and AgNWs enabled the fabrication of a conductive film that was applied as a high sensitivity strain sensor, with gauge factors of 7.1 under the applied strain of 0–10% and 21.1 under the applied strain of 10–30%. Furthermore, the strain sensor was demonstrated to be highly reversible and remained stable after 1000 bending cycles. These results indicated that the AgNWs could act as elastic conductive bridges across cracks in the metal film to maintain high conductivity under tensile and bending loads. As such, the strain sensor engineered herein was successfully applied in the real-time detection and monitoring of large motions of joints and subtle motions of the mouth.


2021 ◽  
Author(s):  
Luis David Rosales-Vazquez ◽  
Alejandro Dorazco-González ◽  
Victor Sanchez-Mendieta

Optical sensors with high sensitivity and selectivity, as important analytical tools for chemical and environmental research, can be accomplished by straightforward synthesis of luminescent one-, two- and three-dimensional Zn(II) and...


RSC Advances ◽  
2021 ◽  
Vol 11 (23) ◽  
pp. 13898-13905
Author(s):  
Chuan Cai ◽  
He Gong ◽  
Weiping Li ◽  
Feng Gao ◽  
Qiushi Jiang ◽  
...  

A three-dimensional electrospun carbon nanofiber network was used to measure press strains with high sensitivity.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1304
Author(s):  
Raquel Fernández de Cabo ◽  
David González-Andrade ◽  
Pavel Cheben ◽  
Aitor V. Velasco

Efficient power splitting is a fundamental functionality in silicon photonic integrated circuits, but state-of-the-art power-division architectures are hampered by limited operational bandwidth, high sensitivity to fabrication errors or large footprints. In particular, traditional Y-junction power splitters suffer from fundamental mode losses due to limited fabrication resolution near the junction tip. In order to circumvent this limitation, we propose a new type of high-performance Y-junction power splitter that incorporates subwavelength metamaterials. Full three-dimensional simulations show a fundamental mode excess loss below 0.1 dB in an ultra-broad bandwidth of 300 nm (1400–1700 nm) when optimized for a fabrication resolution of 50 nm, and under 0.3 dB in a 350 nm extended bandwidth (1350–1700 nm) for a 100 nm resolution. Moreover, analysis of fabrication tolerances shows robust operation for the fundamental mode to etching errors up to ± 20 nm. A proof-of-concept device provides an initial validation of its operation principle, showing experimental excess losses lower than 0.2 dB in a 195 nm bandwidth for the best-case resolution scenario (i.e., 50 nm).


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 60
Author(s):  
Viacheslav Glinskikh ◽  
Oleg Nechaev ◽  
Igor Mikhaylov ◽  
Kirill Danilovskiy ◽  
Vladimir Olenchenko

This paper is dedicated to the topical problem of examining permafrost’s state and the processes of its geocryological changes by means of geophysical methods. To monitor the cryolithozone, we proposed and scientifically substantiated a new technique of pulsed electromagnetic cross-well sounding. Based on the vector finite-element method, we created a mathematical model of the cross-well sounding process with a pulsed source in a three-dimensional spatially heterogeneous medium. A high-performance parallel computing algorithm was developed and verified. Through realistic geoelectric models of permafrost with a talik under a highway, constructed following the results of electrotomography field data interpretation, we numerically simulated the pulsed sounding on the computing resources of the Siberian Supercomputer Center of SB RAS. The simulation results suggest the proposed system of pulsed electromagnetic cross-well monitoring to be characterized by a high sensitivity to the presence and dimensions of the talik. The devised approach can be oriented to addressing a wide range of issues related to monitoring permafrost rocks under civil and industrial facilities, buildings, and constructions.


1998 ◽  
Vol 4 (S2) ◽  
pp. 378-379
Author(s):  
Z. W. Chen ◽  
D. B. Wittry

A monochromatic x-ray microprobe based on a laboratory source has recently been developed in our laboratory and used for fluorescence excitation. This technique provides high sensitivity (ppm to ppb), nondestructive, quantitative microanalysis with minimum sample preparation and does not require a high vacuum specimen chamber. It is expected that this technique (MMXRF) will have important applications in materials science, geological sciences and biological science.Three-dimensional focusing of x-rays can be obtained by using diffraction from doubly curved crystals. In our MMXRF setup, a small x-ray source was produced by the bombardment of a selected target with a focused electron beam and a toroidal mica diffractor with Johann pointfocusing geometry was used to focus characteristic x-rays from the source. In the previous work ∼ 108 photons/s were obtained in a Cu Kα probe of 75 μm × 43 μm in the specimen plane using the fifth order reflection of the (002) planes of mica.


1973 ◽  
Vol 95 (3) ◽  
pp. 415-421 ◽  
Author(s):  
A. J. Wheeler ◽  
J. P. Johnston

Predictions have been made for a variety of experimental three-dimensional boundary layer flows with a single finite difference method which was used with three different turbulent stress models: (i) an eddy viscosity model, (ii) the “Nash” model, and (iii) the “Bradshaw” model. For many purposes, even the simplest stress model (eddy viscosity) was adequate to predict the mean velocity field. On the other hand, the profile of shear stress direction was not correctly predicted in one case by any model tested. The high sensitivity of the predicted results to free stream pressure gradient in separating flow cases is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document