scholarly journals Effects of Individualized Treadmill Endurance Training on Oxidative Stress in Skeletal Muscles of Transgenic Sickle Mice

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Etienne Gouraud ◽  
Emmanuelle Charrin ◽  
John J. Dubé ◽  
Solomon F. Ofori-Acquah ◽  
Cyril Martin ◽  
...  

Oxidative stress is a key feature in the pathophysiology of sickle cell disease. Endurance training has been shown to reduce oxidative stress in the heart and the liver of sickle mice. However, the effects of endurance training on skeletal muscles, which are major producers of reactive oxygen species during exercise, are currently unknown. The aim of this study was to evaluate the effect of sickle genotype on prooxidant/antioxidant response to individualized endurance training in skeletal muscles of sickle mice. Healthy and homozygous Townes sickle mice were divided into trained or sedentary groups. Maximal aerobic speed and V̇O2 peak were determined using an incremental test on a treadmill. Trained mice ran at 40% to 60% of maximal aerobic speed, 1 h/day, 5 days/week for 8 weeks. Oxidative stress markers, prooxidant/antioxidant response, and citrate synthase enzyme activities were assessed in the gastrocnemius, in the plantaris, and in the soleus muscles. Maximal aerobic speed and V̇O2 peak were significantly reduced in sickle compared to healthy mice (-57% and -17%; p<0.001). NADPH oxidase, superoxide dismutase, and catalase activities significantly increased after training in the gastrocnemius of sickle mice only. A similar trend was observed for citrate synthase activity in sickle mice (p=0.06). In this study, we showed an adaptive response to individualized endurance training on the prooxidant/antioxidant balance in the gastrocnemius, but neither in the plantaris nor in the soleus of trained sickle mice, suggesting an effect of sickle genotype on skeletal muscle response to endurance treadmill training.

Genome ◽  
2011 ◽  
Vol 54 (10) ◽  
pp. 829-835 ◽  
Author(s):  
Mysore S. Ranjini ◽  
Ravikumar Hosamani ◽  
Muralidhara ◽  
Nallur B. Ramachandra

The evolution of karyotypically stabilized short-lived (SL) and long-lived (LL) cytoraces in the laboratory have been established and validated through our previous lifespan studies. In the present investigation, we examined the possible reason(s) for the differential longevity among selected members of SL and LL cytoraces, employing the well known paraquat (PQ) resistance bioassay. Exposure of these races to varying concentrations of PQ revealed relatively higher resistance among LL cytoraces than SL cytoraces, as evident by the lower incidence of mortality. Biochemical analysis for endogenous markers of oxidative stress revealed that LL-2 cytorace exhibited lower reactive oxygen species (ROS) and lipid peroxidation (LPO) levels, higher activity levels of superoxide dismutase (SOD), and coupled with higher levels of reduced glutathione (GSH) compared with the levels found in SL-2 cytorace. These findings suggest that the higher susceptibility of SL cytoraces to PQ challenge may be, at least in part, related to the higher endogenous levels of oxidative stress markers. Although the precise mechanisms responsible for the longer longevity among LL cytoraces of the nasuta–albomicans complex of Drosophila merits further investigation, our data suggest that the relatively longer lifespan may be related to the status of endogenous markers that renders them more resistant towards oxidative-stress-mediated lethality, as evident in the PQ assay.


2021 ◽  
Vol 20 (2) ◽  
pp. 45-52
Author(s):  
Sofoklis Stavros ◽  
Antonios Koutras ◽  
Thomas Ntounis ◽  
Konstantinos Koukoubanis ◽  
Theodoros Papalios ◽  
...  

Oxidative stress may play a role in implantation failure on multiple levels. Oxidative stress is found widely in several biological systems, as well as it acts on various molecular levels with different mechanisms. It has been shown that it is rather the disequilibrium between reactive oxygen species causing oxidative stress and antioxidant mechanisms counteracting their effects, than reactive oxygen species levels themselves. Reactive oxygen species play a role in implantation and fertilisation by acting on different levels of embryo-formation and endometrial changes. Additionally, it is widely abundant in the female reproductive tract including ovaries, oocytes, tubal as well as follicular fluid. Moreover, it has been shown that male fertility is affected by reactive oxygen species by determining sperm quality. Last but not least, oxidative stress may affect IVF indirectly through its actions on peritoneal fluid. As long as research studies on elucidating the development of oxidative stress markers on patients undergoing IVF continue, ever more new possibilities emerge on predicting the pregnancy outcome.


2012 ◽  
Vol 48 (4) ◽  
pp. 659-665 ◽  
Author(s):  
Aline Emmer Ferreira Furman ◽  
Railson Henneberg ◽  
Priscila Bacarin Hermann ◽  
Maria Suely Soares Leonart ◽  
Aguinaldo José do Nascimento

Sickle cell disease promotes hemolytic anemia and occlusion of small blood vessels due to the presence of high concentrations of hemoglobin S, resulting in increased production of reactive oxygen species and decreased antioxidant defense capacity. The aim of this study was to evaluate the protective action of a standardized extract of Ginkgo biloba (EGb 761), selected due to its high content of flavonoids and terpenoids, in erythrocytes of patients with sickle cell anemia (HbSS, SS erythrocytes) subjected to oxidative stress using tert-butylhydroperoxide or 2,2-azobis-(amidinepropane)-dihydrochloride, in vitro. Hemolysis indexes, reduced glutathione, methemoglobin concentrations, lipid peroxidation, and intracellular reactive oxygen species were determined. SS erythrocytes displayed increased rates of oxidation of hemoglobin and membrane lipid peroxidation compared to normal erythrocytes (HbAA, AA erythrocytes), and the concentration of EGb 761 necessary to achieve the same antioxidant effect in SS erythrocytes was at least two times higher than in normal ones, inhibiting the formation of intracellular reactive oxygen species (IC50 of 13.6 µg/mL), partially preventing lipid peroxidation (IC50 of 242.5 µg/mL) and preventing hemolysis (IC50 of 10.5 µg/mL). Thus, EGb 761 has a beneficial effect on the oxidative status of SS erythrocytes. Moreover, EGb 761 failed to prevent oxidation of hemoglobin and reduced glutathione at the concentrations examined.


2020 ◽  
Vol 9 (8) ◽  
pp. 2669 ◽  
Author(s):  
Máximo Bernabeu-Wittel ◽  
Raquel Gómez-Díaz ◽  
Álvaro González-Molina ◽  
Sofía Vidal-Serrano ◽  
Jesús Díez-Manglano ◽  
...  

Background: The presence of oxidative stress, telomere shortening, and apoptosis in polypathological patients (PP) with sarcopenia and frailty remains unknown. Methods: Multicentric prospective observational study in order to assess oxidative stress markers (catalase, glutathione reductase (GR), total antioxidant capacity to reactive oxygen species (TAC-ROS), and superoxide dismutase (SOD)), absolute telomere length (aTL), and apoptosis (DNA fragmentation) in peripheral blood samples of a hospital-based population of PP. Associations of these biomarkers to sarcopenia, frailty, functional status, and 12-month mortality were analyzed. Results: Of the 444 recruited patients, 97 (21.8%), 278 (62.6%), and 80 (18%) were sarcopenic, frail, or both, respectively. Oxidative stress markers (lower TAC-ROS and higher SOD) were significantly enhanced and aTL significantly shortened in patients with sarcopenia, frailty or both syndromes. No evidence of apoptosis was detected in blood leukocytes of any of the patients. Both oxidative stress markers (GR, p = 0.04) and telomere shortening (p = 0.001) were associated to death risk and to less survival days. Conclusions: Oxidative stress markers and telomere length were enhanced and shortened, respectively, in blood samples of polypathological patients with sarcopenia and/or frailty. Both were associated to decreased survival. They could be useful in the clinical practice to assess vulnerable populations with multimorbidity and of potential interest as therapeutic targets.


2015 ◽  
Vol 4 (3) ◽  
Author(s):  
Joana Capela-Pires ◽  
Rui Ferreira ◽  
Isabel Alves-Pereira

AbstractThe exposure of living organisms to metals can generate reactive oxygen species and failure in their antioxidant defences, triggering oxidative stress and oxidative damage. Despite the intensive use of engineered nanoparticles in numerous consumer and industrial products, data on their potential hazards in eukaryotic cells and their dependence on environmental factors such as temperature are still scarce. The aim of this study was to evaluate the antioxidant response of


2010 ◽  
Vol 104 (10) ◽  
pp. 1492-1499 ◽  
Author(s):  
Helena Andersson ◽  
Anette Karlsen ◽  
Rune Blomhoff ◽  
Truls Raastad ◽  
Fawzi Kadi

Changes in plasma endogenous and dietary antioxidants and oxidative stress markers were studied following two 90 min elite female soccer games separated by 72 h of either active or passive recovery. The active recovery group (n 8) trained for 1 h at 22 and 46 h after the first game (low-intensity cycling and resistance training), while the passive group rested (n 8). Blood samples were taken before the games; immediately after the games; 21, 45 and 69 h after the first game; and immediately after the second game. The oxidative stress markers and antioxidants were not affected by active recovery. The oxidative stress marker GSSG increased by the same extent after both the games, while the lipid peroxidation marker diacron-reactive oxygen metabolite remained unchanged. The endogenous antioxidants total glutathione and uric acid and ferric reducing/antioxidant power increased immediately after both the games with the same amplitude, while increases in cysteine, cysteine–glycine and total thiols reached significant levels only after the second game. The changes in dietary antioxidants after the first game were either rapid and persistent (tocopherols and ascorbic acid (AA) increased; polyphenols decreased) or delayed (carotenoids). This resulted in high pre-second game levels of tocopherols, AA and carotenoids. Polyphenols returned to baseline at 69 h, and were not affected by the second game. In conclusion, the soccer-associated dietary antioxidant defence, but not the endogenous antioxidant defence, is persistent. Similar acute oxidative stress and endogenous antioxidant responses and dissimilar dietary antioxidant reactions occur during two repeated female soccer games. Finally, the complex antioxidant response to soccer is not affected by active recovery training.


2016 ◽  
Vol 92 (4) ◽  
pp. 394-399
Author(s):  
Priscila Bacarin Hermann ◽  
Mara Albonei Dudeque Pianovski ◽  
Railson Henneberg ◽  
Aguinaldo José Nascimento ◽  
Maria Suely Soares Leonart

2020 ◽  
Vol 32 (18) ◽  
pp. 1301
Author(s):  
Andréa Morgato de Mello Miyasaki ◽  
Camila Rigobello ◽  
Rodrigo Moreno Klein ◽  
Jefferson Crespigio ◽  
Karina Keller Flaiban ◽  
...  

Paracetamol (PAR) is the analgesic and antipyretic of choice for pregnant and nursing women. PAR may reach the fetus and/or neonate through the placenta and/or milk and effect development. This study evaluated possible hepatic and renal effects in rat dams and their offspring exposed to PAR using a human-relevant route of administration and doses from Gestational Day 6 to Postnatal Day (PND) 21. Dams were gavaged daily with PAR (35 or 350mg kg−1) or water (CON). Dams and pups were killed on PND21 and 22 respectively, and blood was collected for biochemical analysis (aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea and creatinine). The kidneys and liver were isolated and processed for histopathological assessment and evaluation of oxidative stress markers. Compared with the CON groups, pups exposed to 350mg kg−1 PAR had increased renal reduced glutathione (GSH), whereas dams exposed to both doses of PAR increased serum AST. PAR administration did not affect parameters of general toxicity or renal and hepatic oxidative stress. In conclusion, maternal exposure to human-relevant doses of PAR by gavage was not associated with hepatic or renal toxicity in the pups or dams, but PAR was not devoid of effects. Exposure to PAR increased renal GSH in pups, which could suggest an adaptive antioxidant response, and affected maternal serum AST activity.


Sign in / Sign up

Export Citation Format

Share Document