scholarly journals Active recovery training does not affect the antioxidant response to soccer games in elite female players

2010 ◽  
Vol 104 (10) ◽  
pp. 1492-1499 ◽  
Author(s):  
Helena Andersson ◽  
Anette Karlsen ◽  
Rune Blomhoff ◽  
Truls Raastad ◽  
Fawzi Kadi

Changes in plasma endogenous and dietary antioxidants and oxidative stress markers were studied following two 90 min elite female soccer games separated by 72 h of either active or passive recovery. The active recovery group (n 8) trained for 1 h at 22 and 46 h after the first game (low-intensity cycling and resistance training), while the passive group rested (n 8). Blood samples were taken before the games; immediately after the games; 21, 45 and 69 h after the first game; and immediately after the second game. The oxidative stress markers and antioxidants were not affected by active recovery. The oxidative stress marker GSSG increased by the same extent after both the games, while the lipid peroxidation marker diacron-reactive oxygen metabolite remained unchanged. The endogenous antioxidants total glutathione and uric acid and ferric reducing/antioxidant power increased immediately after both the games with the same amplitude, while increases in cysteine, cysteine–glycine and total thiols reached significant levels only after the second game. The changes in dietary antioxidants after the first game were either rapid and persistent (tocopherols and ascorbic acid (AA) increased; polyphenols decreased) or delayed (carotenoids). This resulted in high pre-second game levels of tocopherols, AA and carotenoids. Polyphenols returned to baseline at 69 h, and were not affected by the second game. In conclusion, the soccer-associated dietary antioxidant defence, but not the endogenous antioxidant defence, is persistent. Similar acute oxidative stress and endogenous antioxidant responses and dissimilar dietary antioxidant reactions occur during two repeated female soccer games. Finally, the complex antioxidant response to soccer is not affected by active recovery training.

2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Olufunke Esan Olorundare ◽  
Adejuwon Adewale Adeneye ◽  
Akinyele Olubiyi Akinsola ◽  
Daniel Ayodele Sanni ◽  
Mamoru Koketsu ◽  
...  

Doxorubicin is widely applied in hematological and solid tumor treatment but limited by its off-target cardiotoxicity. Thus, cardioprotective potential and mechanism(s) of CVE in DOX-induced cardiotoxicity were investigated using cardiac and oxidative stress markers and histopathological endpoints. 50–400 mg/kg/day CVE in 5% DMSO in distilled water were investigated in Wistar rats intraperitoneally injected with 2.5 mg/kg DOX on alternate days for 14 days, using serum troponin I and LDH, complete lipid profile, cardiac tissue oxidative stress marker assays, and histopathological examination of DOX-treated cardiac tissue. Preliminary qualitative and quantitative assays of CVE’s secondary metabolites were also conducted. Phytochemical analyses revealed the presence of flavonoids (34.79 ± 0.37 mg/100 mg dry extract), alkaloids (36.73 ± 0.27 mg/100 mg dry extract), reducing sugars (07.78 ± 0.09 mg/100 mg dry extract), and cardiac glycosides (24.55 ± 0.12 mg/100 mg dry extract). 50–400 mg/kg/day CVE significantly attenuated increases in the serum LDH and troponin I levels. Similarly, the CVE dose unrelatedly decreased serum TG and VLDL-c levels without significant alterations in the serum TC, HDL-c, and LDL-c levels. Also, CVE profoundly attenuated alterations in the cardiac tissue oxidative stress markers’ activities while improving DOX-associated cardiac histological lesions that were possibly mediated via free radical scavenging and/or antioxidant mechanisms. Overall, CVE may play a significant therapeutic role in the management of DOX-induced cardiotoxicity in humans.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Zihao Wang ◽  
Zhile Bai ◽  
Xiaoyan Qin ◽  
Yong Cheng

Oxidative stress has been reported to be involved in the onset and development of amyotrophic lateral sclerosis (ALS). Data from clinical studies have highlighted increased peripheral blood oxidative stress markers in patients with ALS, but results are inconsistent. Therefore, we quantitatively pooled data on levels of blood oxidative stress markers in ALS patients from the literature using a meta-analytic technique. A systematic search was performed on PubMed and Web of Science, and we included studies analyzing blood oxidative stress marker levels in patients with ALS and normal controls. We included 41 studies with 4,588 ALS patients and 6,344 control subjects, and 15 oxidative stress marker levels were subjected to random-effects meta-analysis. The results demonstrated that malondialdehyde (Hedges’ g, 1.168; 95% CI, 0.812 to 1.523; P<0.001), 8-hydroxyguanosine (Hedges’ g, 2.194; 95% CI, 0.554 to 3.835; P=0.009), and Advanced Oxidation Protein Product (Hedges’ g, 0.555; 95% CI, 0.317 to 0.792; P<0.001) levels were significantly increased in patients with ALS when compared with control subjects. Uric acid (Hedges’ g, -0.798; 95% CI, -1.117 to -0.479; P<0.001) and glutathione (Hedges’ g, -1.636; 95% CI, -3.020 to -0.252; P=0.02) levels were significantly reduced in ALS patients. In contrast, blood Cu, superoxide dismutase, glutathione peroxidase, ceruloplasmin, triglycerides, total cholesterol, low-density lipoprotein, high-density lipoprotein, coenzyme-Q10, and transferrin levels were not significantly different between cases and controls. Taken together, our results showed significantly increased blood levels of 8-hydroxyguanosine, malondialdehyde, and Advanced Oxidation Protein Product and decreased glutathione and uric acid levels in the peripheral blood of ALS patients. This meta-analysis helps to clarify the oxidative stress marker profile in ALS patients, supporting the hypothesis that oxidative stress is a central component underpinning ALS pathogenesis.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Srijita Ghosh ◽  
Sanglap Mitra ◽  
Atreyee Paul

The physiological and biochemical responses to increasing NaCl concentrations, along with low concentrations of gibberellic acid or spermine, either alone or in their combination, were studied in mungbean seedlings. In the test seedlings, the root-shoot elongation, biomass production, and the chlorophyll content were significantly decreased with increasing NaCl concentrations. Salt toxicity severely affected activities of different antioxidant enzymes and oxidative stress markers. Activities of antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT) increased significantly over water control. Similarly, oxidative stress markers such as proline, malondialdehyde (MDA), and hydrogen peroxide (H2O2) contents also increased as a result of progressive increase in salt stress. Combined application of NaCl along with low concentrations of either gibberellic acid (5 µM) or spermine (50 µM) in the test seedlings showed significant alterations, that is, drastic increase in seedling elongation, increased biomass production, increased chlorophyll content, and significant lowering in all the antioxidant enzyme activities as well as oxidative stress marker contents in comparison to salt treated test seedlings, leading to better growth and metabolism. Our study shows that low concentrations of either gibberellic acid or spermine will be able to overcome the toxic effects of NaCl stress in mungbean seedlings.


2020 ◽  
Vol 32 (18) ◽  
pp. 1301
Author(s):  
Andréa Morgato de Mello Miyasaki ◽  
Camila Rigobello ◽  
Rodrigo Moreno Klein ◽  
Jefferson Crespigio ◽  
Karina Keller Flaiban ◽  
...  

Paracetamol (PAR) is the analgesic and antipyretic of choice for pregnant and nursing women. PAR may reach the fetus and/or neonate through the placenta and/or milk and effect development. This study evaluated possible hepatic and renal effects in rat dams and their offspring exposed to PAR using a human-relevant route of administration and doses from Gestational Day 6 to Postnatal Day (PND) 21. Dams were gavaged daily with PAR (35 or 350mg kg−1) or water (CON). Dams and pups were killed on PND21 and 22 respectively, and blood was collected for biochemical analysis (aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea and creatinine). The kidneys and liver were isolated and processed for histopathological assessment and evaluation of oxidative stress markers. Compared with the CON groups, pups exposed to 350mg kg−1 PAR had increased renal reduced glutathione (GSH), whereas dams exposed to both doses of PAR increased serum AST. PAR administration did not affect parameters of general toxicity or renal and hepatic oxidative stress. In conclusion, maternal exposure to human-relevant doses of PAR by gavage was not associated with hepatic or renal toxicity in the pups or dams, but PAR was not devoid of effects. Exposure to PAR increased renal GSH in pups, which could suggest an adaptive antioxidant response, and affected maternal serum AST activity.


2020 ◽  
Vol 20 (5) ◽  
pp. 718-727 ◽  
Author(s):  
Mahsa Omidian ◽  
Mina Abdolahi ◽  
Elnaz Daneshzad ◽  
Mohsen Sedighiyan ◽  
Mohadeseh Aghasi ◽  
...  

Objective: Recent trial studies have found that resveratrol supplementation beneficially reduces oxidative stress marker, but, there is no definitive consensus on this context. The present systematic review and meta-analysis aimed to investigate the effect of resveratrol supplementation on oxidative stress parameters. Methods: We searched databases of Pubmed, Scopus and Cochrane Library up to December 2018 with no language restriction. Studies were reviewed according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) and Cochrane handbook. To compare the effects of resveratrol with placebo, weighted mean difference (WMD) with 95% confidence intervals (CI) were pooled based on the random-effects model. Results: Among sixteen clinical trials, we found that resveratrol supplementation increased GPx serum levels significantly (WMD: 18.61; 95% CI: 8.70 to 28.52; P<0.001) but had no significant effect on SOD concentrations (WMD: 1.01; 95% CI: -0.72 to 2.74; P= 0.25), MDA serum levels (WMD: -1.43; 95% CI: -3.46 to 0.61; P = 0.17) and TAC (WMD: -0.09; 95% CI: -0.29 to 0.11; P = 0.36) compared to placebo. Finally, we observed that resveratrol supplementation may not have a clinically significant effect on oxidative stress. Conclusion: However, the number of human trials is limited in this context, and further large prospective clinical trials are needed to confirm the effect of resveratrol supplement on oxidative stress markers.


2013 ◽  
Vol 34 (4) ◽  
pp. 279-293 ◽  
Author(s):  
Sheng-Hui Wu ◽  
Xiao-Ou Shu ◽  
Wong-Ho Chow ◽  
Yong-Bing Xiang ◽  
Xianglan Zhang ◽  
...  

Objectives: This study evaluated associations of various anthropometric measures of adiposity with a panel of inflammatory and oxidative stress markers in a relatively lean population of Chinese women.Methods: This analysis included 1,005 Chinese women aged 40–70 years. Plasma concentrations of inflammatory and oxidative stress markers were measured. Anthropometric measurements were taken by trained interviewers.Results: Body mass index (BMI), waist circumference (WC), and waist-to-height ratio (WHtR) were all positively and linearly associated with the inflammatory markers, CRP, TNF-α, soluble TNF-receptor 1 (sTNF-R1), and IL-6. A significant positive association of these measures of adiposity with the oxidative stress marker F2-IsoP-M, a metabolite of F2-IsoPs, but with not F2-IsoPs was found. Differences in biomarkers between extreme quartiles of anthropometric measurements varied widely, ranging from 9.7% for sTNF-R1 to 162.0% for CRP. For each specific biomarker, various anthropometric measurements exhibited similar ability to explain variations in the biomarker, with the biggest partial r2(11%) observed for CRP.Conclusions: This study suggests that both general adiposity (measured by BMI) and central adiposity (measured by WC and WHtR) are positively and similarly associated with various markers of inflammation and oxidative stress in relatively lean Chinese women. The metabolite F2-IsoP-M of F2-IsoPs may be a better marker ofin vivooxidative stress than its parent compounds.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Eva Tumova ◽  
Wensheng Sun ◽  
Peter H. Jones ◽  
Michal Vrablik ◽  
Christie M. Ballantyne ◽  
...  

Objective. Obesity is linked with a state of increased oxidative stress, which plays an important role in the etiology of atherosclerosis and type 2 diabetes mellitus. The aim of our study was to evaluate the effect of rapid weight loss on oxidative stress markers in obese individuals with metabolic syndrome (MetS).Design and Methods. We measured oxidative stress markers in 40 obese subjects with metabolic syndrome (MetS+), 40 obese subjects without metabolic syndrome (MetS−), and 20 lean controls (LC) at baseline and after three months of very low caloric diet.Results. Oxidized low density lipoprotein (ox-LDL) levels decreased by 12% in MetS+ subjects, associated with a reduction in total cholesterol (TC), even after adjustment for age and sex. Lipoprotein associated phospholipase A2(Lp-PLA2) activity decreased by 4.7% in MetS+ subjects, associated with a drop in LDL-cholesterol (LDL-C), TC, and insulin levels. Multivariate logistic regression analysis showed that a model including ox-LDL, LpPLA2activity, and myeloperoxidase (MPO) improved prediction of MetS status among obese individuals compared to each oxidative stress marker alone.Conclusions. Oxidative stress markers were predictive of MetS in obese subjects, suggesting a higher oxidative stress. Rapid weight loss resulted in a decline in oxidative stress markers, especially in MetS+ patients.


Author(s):  
Songhee Lee ◽  
Eun Ko ◽  
Hyojin Lee ◽  
Ki-Tae Kim ◽  
Moonsung Choi ◽  
...  

Persistent organic pollutants (POPs) are lipid-soluble toxins that are not easily degraded; therefore, they accumulate in the environment and the human body. Several studies have indicated a correlation between POPs and metabolic diseases; however, their effects on mitochondria as a central organelle in cellular metabolism and the usage of mitochondria as functional markers for metabolic disease are barely understood. In this study, a zebrafish model system was exposed to two subclasses of POPs, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), under two different conditions (solitary OCPs or OCPs with PCBs (Aroclor 1254)), and changes in the oxidative stress marker levels and mitochondrial enzyme activities in the electron transport chain of the tail were measured to observe the correlation between POPs and representative biomarkers for metabolic disease. The results indicated different responses upon exposure to OCPs and OCPs with Aroclor 1254, and accelerated toxicity was observed following exposure to mixed POPs (OCPs with Aroclor 1254). Males were more sensitive to changes in the levels of oxidative stress markers induced by POP exposure, whereas females were more susceptible to the toxic effects of POPs on the levels of mitochondrial activity markers. These results demonstrate that the study reflects real environmental conditions, with low-dose and multiple-toxin exposure for a long period, and that POPs alter major mitochondrial enzymes’ functions with an imbalance of redox homeostasis in a sex-dependent manner.


2017 ◽  
Vol 68 (6) ◽  
pp. 1211-1215
Author(s):  
Ioana Scrobota ◽  
Grigore Baciut ◽  
Roxana Buzatu ◽  
Camelia Szuhanek ◽  
Liana Todor ◽  
...  

In our study we induced oral premalignant lesions using 4 nitro-quinoline-1-oxide (4NQO) topically applied on oral mucosa for 24 weeks. We detected an oxidative stress marker malondialdehyde (MDA) significantly increased (p[0.05) and an antioxidant/detoxifying activity marker, glutathione (GSH), significantly decreased (p[0.05) in the oral induced epithelial dysplasias. We appreciated that issue MDA and GSH could serve as diagnostic, screening and evaluation of response to therapy tools in oral premalignacy.


Sign in / Sign up

Export Citation Format

Share Document