scholarly journals Experimental Investigation of the Influence of Cellulose Ether on the Floating of Rubber Particles in Mortar

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Jian Liang ◽  
Bin Zhang ◽  
Changshun Liu ◽  
Chao Zhang

As a kind of hyperelastic material, rubber can be mixed into mortar (or concrete) to improve the anticracking ability and ductility of concrete. The mixture of rubber can change the internal structure of concrete through physical interaction, without changing the chemical properties of each component in the mortar (or concrete). But since the apparent density of rubber is far less than the density of cement-based materials, rubber particles are likely to separate from cement-based materials in the mixture of rubber and mortar, and consequently, rubber particles will float upward. This study proposes a new method to restrain the rubber particles from floating upward: add cellulose ether in the mortar with a water-cement ratio of 0.45 so as to improve the mobility of mixture. Meanwhile, this study employs the method of quadratic orthogonal rotation combination experiment to carry out research on the influence of the mixing amount of cellulose ether (0∼5.43 kg/m3) and the ratio of rubber substituting for mortar (0∼0.5) on the degree of uniformity, consistency, and 28-day (28 d) strength of crumb rubber mortar, and it also studies the inhibiting effect of cellulose ether on the floating of rubber. The results show that cellulose ether mixed into the mortar can significantly improve the mobility of the mixture and restrain the floating of rubber. But with the increase of the mixing amount of cellulose ether, the 28 d strength of the mortar shows an obvious decreasing trend. This study has a guiding role in the practical application of crumb rubber mortar, crumb rubber concrete, and other lightweight aggregate concrete.

2014 ◽  
Vol 941-944 ◽  
pp. 761-764
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Zi Sheng Zang

The cementitiousness between rubber particles and cement-based material could be raised because of the surface modification of rubber,thus enhance the mechanical property of crumb rubber concrete and improve the interface effect of rubber particles.We had researched the change regulation about the ratio of bending-compressive strength of the crumb rubber concrete modified by latex,the concrete with various quantity of rubber,under the condition dosage of latex is 0.5% of cement quality.The result of experimental prove that,compressive strength, splitting tensile and flexural strength could be enhanced because of latex injecting,and the ratio of bending-compressive strength could be enhanced at the same time.


Author(s):  
Fayssal Cheriet ◽  
Alan Carter ◽  
Smail Haddadi

This research aims to evaluate the performance of the hot mix asphalt modified with crumb rubber by the dry process by studying the temperature’s influence as well as the impact of the digestion time between bitumen and crumb-rubber. The residual bitumen from the drainage test and the non-modified aged bitumen are then subjected to the dynamic shear rheometer (DSR) tests at different frequencies with different temperatures and to Fourier transform infrared spectroscopy (FTIR) analysis. The results show the bitumen and the rubber interaction is directly related to the temperature and the contact time. The maximum increase in rubber mass observed here is about 42% at 195ºC for 120 minutes of contact. The decrease of the light fractions in the bitumen causes a stiffening of the latter as DSR tests show. Lastly, FTIR analysis indicates only a physical interaction.


2014 ◽  
Vol 919-921 ◽  
pp. 1916-1919
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Zi Sheng Zang

The cementitiousness between rubber particles and cement-based material could be raised because of the surface modification of rubber,thus enhance the mechanical property of crumb rubber concrete and improve the interface effect of rubber particles.We had researched the change regulation of the ratio between tensile strength and compressive strength of the Crumb Rubber Concrete Modified by latex,the concrete with various quantity of rubber,under the condition Dosage of latex is 0.5% of cement quality.The result of Experimental prove that,compressive strength, splitting tensile and flexural strength could be enhanced because of latex injecting,and the ratio between tensile strength and compressive strength could be enhanced at the same time.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2551 ◽  
Author(s):  
Jing Lv ◽  
Tianhua Zhou ◽  
Hanheng Wu ◽  
Liurui Sang ◽  
Zuoqian He ◽  
...  

A composite slab comprised of self-compacting rubber lightweight aggregate concrete (SCRLC) and profiled steel sheeting is a new type of structural element with a series of superior properties. This paper presents an experimental research and finite element analysis (FEA) of the flexural behavior of composite slabs consisting of SCRLC to develop a new floor system. Four composite slabs specimens with different shear spans (450 mm and 800 mm) and SCRLC (0% and 30% in rubber particles substitution ratio) are prepared, and the flexural properties including failure modes, deflection at mid-span, profiled steel sheeting, and concrete surface stain at mid-span and end slippage are investigated by four-point bending tests. The experimental results indicate that applying SCRLC30 in composites slabs will improve the anti-cracking ability under the loading of composite slabs compared with composite slabs consisting of self-compacting lightweight aggregate concrete (SCLC). FEM on the flexural properties of SCRLC composites slabs show that the yield load, ultimate load, and deflection corresponding to the yield load and the ultimate load of composite slabs drop as the rubber particles content increases in SCRLC. The variation of SCRLC strength has less impact on the flexural bearing capacity of corresponding composite slabs. Based on the traditional calculated method of the ultimate bending moment of normal concrete (NC) composite slabs, a modified calculated method for the ultimate bending moment of SCRLC composite slabs is proposed.


2012 ◽  
Vol 28 (4) ◽  
pp. 147-156 ◽  
Author(s):  
Guiming Wang ◽  
Bin Zhang ◽  
Zhonghe Shui ◽  
Daoyi Tang ◽  
Yun Kong

It is of great significance to improve the flexibility of concrete for specific applications, such as a tunnel pavement or an airport runway. This paper presents the structural properties of the rubberized lightweight aggregate concrete at the macro- and micro-level. The relationship between mechanical properties and microstructure features was further explored. An experimental programme was developed to use crumb rubber and shale ceramsite to produce a flexible concrete. Much attention was paid to the influence of the crumb rubber dosage. The compressive strength and elastic modulus of the rubberized lightweight aggregate concrete were measured. Furthermore, the corresponding microstructure was evaluated by microhardness assessment and microscopic observation. Experimental results show that with the increase of crumb rubber dosage, the bonding interface between the rubber and cement paste, as well as between the shale ceramsite and cement paste, gradually became weakened or flexible. In addition, the width of the weak bonding interface became wider. As a result the flexibility of lightweight aggregate concrete can be effectively improved by correctly adjusting the crumb rubber dosage.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Jing Lv ◽  
Qiang Du ◽  
Tianhua Zhou ◽  
Zuoqian He ◽  
Kunlun Li

Increasing amount of waste tires caused huge environment issues in recent years. Recycling concrete is an effective way. In this paper, waste tires are crushed into particles and incorporated in lightweight aggregate concrete to prepare a special concrete (self-compacting rubber lightweight aggregate concrete (SCRLC)). A detailed experimental research of effects of rubber particles on the properties of SCRLC and corresponding mortar is conducted. The results show that increasing the rubber particles replacement ratio leads to a raising of yield stress and plastic viscosity of mortar pastes. Flowability, filling capacity, and passing ability of SCRLC decline and the segregation resistance property of SCRLC improves as the rubber particles replacement ratio increases. Well, linear correlations between slump flow of SCRLC and shear stress of corresponding mortar pastes and segregation ratio of SCRLC and plastic viscosity of corresponding mortar pastes are obtained. In order to ensure that rubber lightweight aggregate concrete can compact by itself, the upper limit of shear stress of corresponding mortar pastes is 231.7 Pa and the lower limit of plastic viscosity of corresponding mortar pastes is 3.72 Pa·s. Compressive strength, splitting tensile strength, flexural strength, and elastic modulus of SCRLC and compressive strength of corresponding mortar decrease as the rubber particles replacement ratio increases. The 28-day compressive strength of SCRLC can meet the requirements of lightweight aggregate concrete structures until the rubber particles replacement ratio reaches 50%.


2021 ◽  
Vol 03 (03) ◽  
pp. 1-1
Author(s):  
Layachi Guelmine ◽  
◽  
Hadda Hadjab ◽  

The present study investigated the effect of reused rubber particles (RRP) on the deicer salt durability of ordinary concrete. Four mixtures were designed, a control concrete (CC) and three other rubber concretes obtained by partial substitution of natural dune sand aggregate with reused rubber particles with 0%, 3%, 6%, and 9% w/w. All studied concretes were subjected to the combined effect of freeze/thaw (56 and 120) cycles with the deicer salt solution of 3% NaCl. The results indicated that RRP improved the deicer-salt scaling resistance of rubber concrete strongly compared with the control. The observed innovative property of RRP could be applied to cement-based materials to improve their deicer salt durability. Further, this environmentally friendly practice could reduce the stock of waste tires and offer a renewable source of construction aggregates.


2008 ◽  
Vol 385-387 ◽  
pp. 817-820 ◽  
Author(s):  
Ji Wang ◽  
Yue Li ◽  
Ming Zhong Zhang

To improve the cracking resistance of lightweight aggregate concrete, rubber particles and polymer were added. Experimental results showed that the shrinkage rate increased when rubber particles were added into lightweight aggregate concrete, but when polymer was mixed, the shrinkage rate decreased dramatically. Microstructure analysis indicated that the interface transition zone (ITZ) influenced the shrinkage performance of rubberized lightweight aggregate concrete with polymer directly; the ITZ bondage between rubber particles and cement matrix was very poor and the restriction to shrinkage was weak, which were the main reasons for the increase of shrinkage rate of rubberized lightweight aggregate concrete; when polymer was mixed into the concrete, the hole and ITZ structure of concrete were improved, which made the strain energy absorbing function of rubber particles can be exerted entirely and the flexibility of ITZ was boosted, thereby the shrinkage performance and cracking resistance of lightweight aggregate concrete were improved.


Sign in / Sign up

Export Citation Format

Share Document