scholarly journals Common Core Bacterial Biomarkers of Bladder Cancer Based on Multiple Datasets

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Guoqin Mai ◽  
Limei Chen ◽  
Ran Li ◽  
Quan Liu ◽  
Haoran Zhang ◽  
...  

Recent studies have shown that microorganisms may be associated with the onset and development of bladder cancer. The purpose of this study is to identify the common core bacteria associated with bladder cancer. We characterized the urinary microbial profile of the individuals with bladder cancer by 16S rRNA gene sequencing, and the results of 24 bladder cancer samples collected in our laboratory reveal 31 common core bacteria at genera level. In addition, the abundance of four common core bacteria is significantly higher in bladder cancer samples than in samples from nondiseased people analyzed by LEfSe, based on two previous datasets. In particular, the abundance of Acinetobacter is much higher in bladder cancer samples. It has been reported that Acinetobacter is involved not only in biofilm formation but also in the adhesion and invasion of epithelial cells, the spread of bacteria caused by the degradation of phospholipids in the mucosal barrier, and the escape of the host immune response. Thus, Acinetobacter may be related to bladder cancer and is a potential microbial marker of bladder cancer. However, due to the limited number of participants, further studies are needed to better understand the role of microorganisms in bladder cancer to provide novel biomarkers for diagnosis, prognosis, and therapy.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shenhai Gong ◽  
Yinglin Feng ◽  
Yunong Zeng ◽  
Huanrui Zhang ◽  
Meiping Pan ◽  
...  

Abstract Background Gut microbiota has been reported to be disrupted by cisplatin, as well as to modulate chemotherapy toxicity. However, the precise role of intestinal microbiota in the pathogenesis of cisplatin hepatotoxicity remains unknown. Methods We compared the composition and function of gut microbiota between mice treated with and without cisplatin using 16S rRNA gene sequencing and via metabolomic analysis. For understanding the causative relationship between gut dysbiosis and cisplatin hepatotoxicity, antibiotics were administered to deplete gut microbiota and faecal microbiota transplantation (FMT) was performed before cisplatin treatment. Results 16S rRNA gene sequencing and metabolomic analysis showed that cisplatin administration caused gut microbiota dysbiosis in mice. Gut microbiota ablation by antibiotic exposure protected against the hepatotoxicity induced by cisplatin. Interestingly, mice treated with antibiotics dampened the mitogen-activated protein kinase pathway activation and promoted nuclear factor erythroid 2-related factor 2 nuclear translocation, resulting in decreased levels of both inflammation and oxidative stress in the liver. FMT also confirmed the role of microbiota in individual susceptibility to cisplatin-induced hepatotoxicity. Conclusions This study elucidated the mechanism by which gut microbiota mediates cisplatin hepatotoxicity through enhanced inflammatory response and oxidative stress. This knowledge may help develop novel therapeutic approaches that involve targeting the composition and metabolites of microbiota.


2020 ◽  
Vol 20 (7) ◽  
pp. 2564-2576
Author(s):  
Hongxi Peng ◽  
Ya Zhang ◽  
Ruowei Wang ◽  
Jingqing Liu ◽  
Wen-Tso Liu

Abstract Stagnation occurs in building water supplies when there is little or no water usage. As a result, the number of bacteria increase, and this often leads to the deterioration of water quality. Still, the role of biofilm in stagnation remains unclear. This study used shower hoses as the model system and investigated the contribution of biofilm and microbes in fresh water to the bacterial growth in water under different stagnation times from 6 to 24 h. Bacterial counts in water were observed to increase significantly after 12 h stagnation but longer stagnation did not lead to further increase, indicating different mechanisms contributing to bacterial growth during stagnation. 16S rRNA gene sequencing and Sourcetracker2 further confirmed that the contribution of fresh water to the microbial core community did not increase significantly with stagnation time, whereas the contribution of biofilm increased significantly after 24 h stagnation (53.5%) compared with 6 h stagnation (11.2%) (p < 0.05). The present results differentiated the contribution between planktonic and biofilm phase to the bacterial growth during stagnation, and provided insights into its mechanism. These findings serve as a framework for future development of strategies to manage biological water quality at the distal end of the building water supplies.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 879
Author(s):  
Stefan G. Buzoianu ◽  
Ava M. Firth ◽  
CallaBria Putrino ◽  
Fabio Vannucci

A healthy microbial community in the gut of piglets is critical to minimize the negative performance consequences associated with dietary and environmental changes that occur at weaning. Tonisity Px, an isotonic protein drink, is a potential alternative to balance the gut microbiota as it contains key ingredients for nourishing the small intestine. In the present study, 16 litters comprising 161 piglets were randomly allocated to a group to which Tonisity Px was provided from days 2 to 8 of age (TPX group) or to a control group, to which no Tonisity Px was provided. The TPX group also received Tonisity Px in the 3 days before and after weaning. At days 9, 17, and 30 of age, fecal and ileum samples were collected from piglets belonging to both groups and analyzed using 16S rRNA gene sequencing, semiquantitative PCR of Rotavirus serogroups, and semiquantitative Escherichia coli culture. Overall, Tonisity Px increased the abundance of beneficial bacterial populations (Lactobacillus and Bacteroides species) and reduced potentially pathogenic bacterial populations (E. coli and Prevotellaceae), in both the pre-weaning and post-weaning periods.


2021 ◽  
Author(s):  
Yuanyuan Wang ◽  
Hao Xu ◽  
Minghui Wei ◽  
Yuhong Wang ◽  
Wenzhe Wang ◽  
...  

Abstract BackgroundOrofacial granulomatosis (OFG) is a granulomatous inflammation (GI) disease in maxillofacial region, the underlying cause of it remains unknown. Our previous study demonstrated that tooth apical periodontitis (AP) plays a significant role in the pathogenesis of OFG, we aimed here to characterize the AP bacterial signatures of OFG patients, and identify bacteria that may be important pathogens capable of inducing OFG.ResultsThe composition of AP microbiota in OFG cases and common AP controls was compared using 16S rRNA gene sequencing, the results showed a specific AP microbiota signature in OFG patients, characterized by domination of phyla Firmicutes and Proteobacteria , notably members of Streptococcus, Lactobacillus and Neisseria. To assess the pathogenicity of the potential pathogens in OFG, we isolated and successfully in vitro cultured Streptococcus, Lactobacillus casei, Neisseria subflava, Veillonella parvula and Actinomyces from OFG patients, and injected the clinical isolates into mice respectively. Ultimately, foot pad injection with N. subflava elicited granulomatous inflammation, and the virulence of N. subflava was verified based on Koch’s postulates.ConclusionsOur findings confirmed the role of bacteria in OFG, and first suggested that the component of the host normal microbiota, N. subflava is likely a pathogen for GI.


Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1356
Author(s):  
Michele Tomasi ◽  
Mattia Dalsass ◽  
Francesco Beghini ◽  
Ilaria Zanella ◽  
Elena Caproni ◽  
...  

A large body of data both in animals and humans demonstrates that the gut microbiome plays a fundamental role in cancer immunity and in determining the efficacy of cancer immunotherapy. In this work, we have investigated whether and to what extent the gut microbiome can influence the antitumor activity of neo-epitope-based cancer vaccines in a BALB/c-CT26 cancer mouse model. Similarly to that observed in the C57BL/6-B16 model, Bifidobacterium administration per se has a beneficial effect on CT26 tumor inhibition. Furthermore, the combination of Bifidobacterium administration and vaccination resulted in a protection which was superior to vaccination alone and to Bifidobacterium administration alone, and correlated with an increase in the frequency of vaccine-specific T cells. The gut microbiome analysis by 16S rRNA gene sequencing and shotgun metagenomics showed that tumor challenge rapidly altered the microbiome population, with Muribaculaceae being enriched and Lachnospiraceae being reduced. Over time, the population of Muribaculaceae progressively reduced while the Lachnospiraceae population increased—a trend that appeared to be retarded by the oral administration of Bifidobacterium. Interestingly, in some Bacteroidales, Prevotella and Muribaculacee species we identified sequences highly homologous to immunogenic neo-epitopes of CT26 cells, supporting the possible role of “molecular mimicry” in anticancer immunity. Our data strengthen the importance of the microbiome in cancer immunity and suggests a microbiome-based strategy to potentiate neo-epitope-based cancer vaccines.


2021 ◽  
pp. 1-13
Author(s):  
Gilda Varliero ◽  
Alexandra Holland ◽  
Gary L. A. Barker ◽  
Marian L. Yallop ◽  
Andrew G. Fountain ◽  
...  

Abstract Distant glacial areas are interconnected by a complex system of fractures and water channels which run in the glacier interior and characterize the englacial realm. Water can slowly freeze in these channels where the slow freezing excludes air bubbles giving the ice a clear aspect. This ice is uplifted to the surface ablation zone by glacial movements and can therefore be observed in the form of clear surface ice bands. We employed an indirect method to sample englacial water by coring these ice bands. We were able, for the first time, to compare microbial communities sampled from clear (i.e. frozen englacial water bands) and cloudy ice (i.e. meteoric ice) through 16S rRNA gene sequencing. Although microbial communities were primarily shaped and structured by their spatial distribution on the glacier, ice type was a clear secondary factor. One area of the glacier, in particular, presented significant microbial community clear/cloudy ice differences. Although the clear ice and supraglacial communities showed typical cold-adapted glacial communities, the cloudy ice had a less defined glacial community and ubiquitous environmental organisms. These results highlight the role of englacial channels in the microbial dispersion within the glacier and, possibly, in the shaping of glacial microbial communities.


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 942
Author(s):  
Alessandro Stamilla ◽  
Susana Ruiz-Ruiz ◽  
Alejandro Artacho ◽  
Javier Pons ◽  
Antonino Messina ◽  
...  

Gut microbiota contributes to animal health. However, identifying which microorganisms or associated functions are involved remains, still, difficult to assess. In the present study, the microbiota of healthy broiler chickens, under controlled diet and farm conditions, was investigated by 16S rRNA gene sequencing in four intestine segments and at four ages. In detail, 210 Ross-308 male chickens were raised according to the EU guidelines and fed on a commercial diet. The duodenum, jejunum, ileum, and caecum microbiota were analyzed at 11, 24, 35, and 46 days of life. Although the microbial composition was revealed as homogeneous 11 days after chicks hatched, it was found to be similar in the proximal intestine segments and different in ileum and caecum, where almost the same genera and species were detected with different relative abundances. Although changes during the later growth stage were revealed, each genus remained relatively unchanged. Lactobacillus mostly colonized the upper tract of the intestine, whereas the Escherichia/Shigella genus the ileum. Clostridium and Bacteroides genera were predominant in the caecum, where the highest richness of bacterial taxa was observed. We also analyze and discuss the predicted role of the microbiota for each intestine segment and its potential involvement in nutrient digestion and absorption.


1998 ◽  
Vol 36 (9) ◽  
pp. 2499-2502 ◽  
Author(s):  
Michael Giladi ◽  
Boaz Avidor ◽  
Yehudith Kletter ◽  
Suzy Abulafia ◽  
Leonard N. Slater ◽  
...  

Since its isolation in 1988, Afipia felis has been associated with cat scratch disease (CSD) in only one report and its role in CSD has been questioned. We have cultured A. felisfrom a lymph node of a patient with CSD. 16S rRNA gene sequencing, DNA relatedness studies, fatty acid analysis, and PCR of the A. felis ferredoxin gene showed that the isolate is identical to the previously reported A. felis isolate. To determine the role of A. felis in CSD, PCR of the 16S rRNA gene followed by hybridizations with specific probes were performed with lymph node specimens from CSD patients. All 32 specimens tested positive forBartonella henselae and negative for A. felis. We conclude that A. felis is a rare cause of CSD. Diagnostic tests not conducive to the identification of A. felis might cause the diagnosis of CSD due to A. felis to be missed.


2019 ◽  
Author(s):  
Kattayoun Kordy ◽  
Thaidra Gaufin ◽  
Martin Mwangi ◽  
Fan Li ◽  
Chiara Cerini ◽  
...  

AbstractIncreasing evidence supports the importance of the breast milk microbiome in seeding the infant gut. However, the origin of bacteria in milk and the process of milk microbe-mediated seeding of infant intestine need further elucidation. Presumed sources of bacteria in milk include locations of mother-infant and mother-environment interactions. We investigate the role of mother-infant interaction on breast milk microbes. Shotgun metagenomics and 16S rRNA gene sequencing identified milk microbes of mother-infant pairs in breastfed infants and in infants that have never latched. Although breast milk has low overall biomass, milk microbes play an important role in seeding the infant gut. Breast milk bacteria were largely comprised of Staphylococcus, Streptococcus, Acinetobacter, and Enterobacter primarily derived from maternal areolar skin and infant oral sites in breastfeeding pairs. This suggests that the process of breastfeeding is a potentially important mechanism for propagation of breast milk microbes through retrograde flux via infant oral and areolar skin contact. In one infant delivered via Caesarian section, a distinct strain of Bifidobacteria breve was identified in maternal rectum, breast milk and the infant’s stool potentially suggesting direct transmission. This may support the existence of microbial translocation of this anaerobic bacteria via the enteromammary pathway in humans, where maternal bacteria translocate across the maternal gut and are transferred to the mammary glands. Modulating sources of human milk microbiome seeding potentially imply opportunities to ultimately influence the development of the infant microbiome and health.


Sign in / Sign up

Export Citation Format

Share Document