scholarly journals Identification of Upregulated HNRNPs Associated with Poor Prognosis in Pancreatic Cancer

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Lu Qiao ◽  
Ning Xie ◽  
Yuru Bai ◽  
Yan Li ◽  
Yongquan Shi ◽  
...  

Heterogeneous nuclear ribonucleoproteins (HNRNPs) are reported to play a crucial role in the pathogenic process of multiple malignancies. However, the expression patterns and prognostic values of HNRNPs in pancreatic cancer (PC) are lacking. In this study, several public databases were explored to identify the commonly upregulated HNRNPs in PC. The clinical significance of HNRNPL (heterogeneous nuclear ribonucleoproteins L) in PC was analyzed. We further performed a series of experiments to elucidate the biological functions of HNRNPL. Bioinformatics analysis including pathway enrichment and interactors with HNRNPL was used to explain the potential mechanisms of HNRNPL in PC pathogenesis. Herein, we reported that HNRNPL was commonly overexpressed in public databases and that high expression of HNRNPL in PC was positively associated with aggressive disease and poor overall survival. Downregulation of HNRNPL suppressed the abilities of migration and epithelial mesenchymal transition of PC cells in vitro, while depletion of HNRNPL did not affect the proliferation rate of PC cells. We further showed that HNRNPL might combine with RNA-binding protein, PTBP1, and function as a part of the spliceosome to regulate alternative splicing of target genes in the occurrence and development of PC. HNRNPL could be employed as an innovative prognostic biomarker and therapeutic target for PC.

Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1477 ◽  
Author(s):  
Yoo ◽  
Lee ◽  
Jun ◽  
Noh ◽  
Lee ◽  
...  

Yes-associated protein (YAP)-1 is highly upregulated in pancreatic cancer and associated with tumor progression. However, little is known about the role of YAP1 and related genes in pancreatic cancer. Here, we identified target genes regulated by YAP1 and explored their role in pancreatic cancer progression and the related clinical implications. Analysis of different pancreatic cancer databases showed that Neuromedin U (NMU) expression was positively correlated with YAP1 expression in the tumor group. The Cancer Genome Atlas data indicated that high YAP1 and NMU expression levels were associated with poor mean and overall survival. YAP1 overexpression induced NMU expression and transcription and promoted cell motility in vitro and tumor metastasis in vivo via upregulation of epithelial–mesenchymal transition (EMT), whereas specific inhibition of NMU in cells stably expressing YAP1 had the opposite effect in vitro and in vivo. To define this functional association, we identified a transcriptional enhanced associate domain (TEAD) binding site in the NMU promoter and demonstrated that YAP1–TEAD binding upstream of the NMU gene regulated its transcription. These results indicate that the identified positive correlation between YAP1 and NMU is a potential novel drug target and biomarker in metastatic pancreatic cancer.


2021 ◽  
Author(s):  
Xinxue Zhang ◽  
Zhangyong Ren ◽  
Junming Xu ◽  
Qing Chen ◽  
Jun Ma ◽  
...  

Abstract Micro(mi)RNAs play an essential role in the epithelial-mesenchymal transition (EMT) process in human cancers. This study aimed to uncover the regulatory mechanism of miR-1301-3p on EMT in pancreatic cancer (PC). The miRNA profilings from Gene Expression Omnibus datasets (GSE31568, GSE41372, and GSE32688) demonstrated the downregulation of miR-1301-3p in PC tissues, which was validated with 72 paired PC tissue samples through qRT-PCR detection. The low level of miR-1301-3p was associated with a poor prognosis for PC patients from the PC cohort of The Cancer Genome Atlas and the validation cohort. Gene Ontology analyses indicated that the target genes of miR-1301-3p were involved in cell cycle and adherent junction regulation. In vitro assays revealed that miR-1301-3p suppressed the proliferation and migration abilities of PC cells. Western blotting and luciferase reporter assays suggested that miR-1301-3p inhibited RhoA expression by targeting its 3′-untranslated region; RhoA upregulated N-cadherin and vimentin level, however, downregulated E-cadherin level. In conclusion, our study showed that miR-1301-3p could serve as a prognostic biomarker for PC and suppress PC cell malignancy by targeting RhoA induced EMT process.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Anqi Xu ◽  
Xizhao Wang ◽  
Jie Luo ◽  
Mingfeng Zhou ◽  
Renhui Yi ◽  
...  

AbstractThe homeobox protein cut-like 1 (CUX1) comprises three isoforms and has been shown to be involved in the development of various types of malignancies. However, the expression and role of the CUX1 isoforms in glioma remain unclear. Herein, we first identified that P75CUX1 isoform exhibited consistent expression among three isoforms in glioma with specifically designed antibodies to identify all CUX1 isoforms. Moreover, a significantly higher expression of P75CUX1 was found in glioma compared with non-tumor brain (NB) tissues, analyzed with western blot and immunohistochemistry, and the expression level of P75CUX1 was positively associated with tumor grade. In addition, Kaplan–Meier survival analysis indicated that P75CUX1 could serve as an independent prognostic indicator to identify glioma patients with poor overall survival. Furthermore, CUX1 knockdown suppressed migration and invasion of glioma cells both in vitro and in vivo. Mechanistically, this study found that P75CUX1 regulated epithelial–mesenchymal transition (EMT) process mediated via β-catenin, and CUX1/β-catenin/EMT is a novel signaling cascade mediating the infiltration of glioma. Besides, CUX1 was verified to promote the progression of glioma via multiple other signaling pathways, such as Hippo and PI3K/AKT. In conclusion, we suggested that P75CUX1 could serve as a potential prognostic indicator as well as a novel treatment target in malignant glioma.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jie Wang ◽  
Zhiwei He ◽  
Jian Xu ◽  
Peng Chen ◽  
Jianxin Jiang

AbstractAn accumulation of evidence indicates that long noncoding RNAs are involved in the tumorigenesis and progression of pancreatic cancer (PC). In this study, we investigated the functions and molecular mechanism of action of LINC00941 in PC. Quantitative PCR was used to examine the expression of LINC00941 and miR-335-5p in PC tissues and cell lines, and to investigate the correlation between LINC00941 expression and clinicopathological features. Plasmid vectors or lentiviruses were used to manipulate the expression of LINC00941, miR-335-5p, and ROCK1 in PC cell lines. Gain or loss-of-function assays and mechanistic assays were employed to verify the roles of LINC00941, miR-335-5p, and ROCK1 in PC cell growth and metastasis, both in vivo and in vitro. LINC00941 and ROCK1 were found to be highly expressed in PC, while miR-335-5p exhibited low expression. High LINC00941 expression was strongly associated with larger tumor size, lymph node metastasis, and poor prognosis. Functional experiments revealed that LINC00941 silencing significantly suppressed PC cell growth, metastasis and epithelial–mesenchymal transition. LINC00941 functioned as a molecular sponge for miR-335-5p, and a competitive endogenous RNA (ceRNA) for ROCK1, promoting ROCK1 upregulation, and LIMK1/Cofilin-1 pathway activation. Our observations lead us to conclude that LINC00941 functions as an oncogene in PC progression, behaving as a ceRNA for miR-335-5p binding. LINC00941 may therefore have potential utility as a diagnostic and treatment target in this disease.


2005 ◽  
Vol 16 (4) ◽  
pp. 1987-2002 ◽  
Author(s):  
Ulrich Valcourt ◽  
Marcin Kowanetz ◽  
Hideki Niimi ◽  
Carl-Henrik Heldin ◽  
Aristidis Moustakas

Epithelial-mesenchymal transition (EMT) contributes to normal tissue patterning and carcinoma invasiveness. We show that transforming growth factor (TGF)-β/activin members, but not bone morphogenetic protein (BMP) members, can induce EMT in normal human and mouse epithelial cells. EMT correlates with the ability of these ligands to induce growth arrest. Ectopic expression of all type I receptors of the TGF-β superfamily establishes that TGF-β but not BMP pathways can elicit EMT. Ectopic Smad2 or Smad3 together with Smad4 enhanced, whereas dominant-negative forms of Smad2, Smad3, or Smad4, and wild-type inhibitory Smad7, blocked TGF-β–induced EMT. Transcriptomic analysis of EMT kinetics identified novel TGF-β target genes with ligand-specific responses. Using a TGF-β type I receptor that cannot activate Smads nor induce EMT, we found that Smad signaling is critical for regulation of all tested gene targets during EMT. One such gene, Id2, whose expression is repressed by TGF-β1 but induced by BMP-7 is critical for regulation of at least one important myoepithelial marker, α-smooth muscle actin, during EMT. Thus, based on ligand-specific responsiveness and evolutionary conservation of the gene expression patterns, we begin deciphering a genetic network downstream of TGF-β and predict functional links to the control of cell proliferation and EMT.


2019 ◽  
Vol 9 ◽  
Author(s):  
Zhang-qi Cao ◽  
Xue-xi Wang ◽  
Li Lu ◽  
Jing-wen Xu ◽  
Xiao-bin Li ◽  
...  

β-sitosterol (BS), a major bioactive constituent present in plants, has shown potent anti-cancer activity against many human cancer cells, but its activity in pancreatic cancer (PC) cells has rarely been reported. Gemcitabine (GEM) is one of the first-line drugs for PC therapy, however, the treatment effect is not sustained due to prolonged drug resistance. In this study, we firstly studied the anti-PC activity and the mechanism of BS alone and in combination with GEM in vitro and in vivo. BS effectively inhibited the growth of PC cell lines by inhibiting proliferation, inducing G0/G1 phase arrest and apoptosis, suppressed the NF- kB activity, and increased expression of the protein Bax but decreased expression of the protein Bcl-2. Moreover, BS inhibited migration and invasion and downregulated epithelial–mesenchymal transition (EMT) markers and AKT/GSK-3β signaling pathways. Furthermore, the combination of BS and GEM exhibited a significant synergistic effect in MIAPaCa-2 and BXPC-3 cells. More importantly, the combined treatment with BS and GEM lead to significant growth inhibition of PC xenografts. Overall, our data revealed a promising treatment option for PC by the combination therapy of BS and GEM.


2020 ◽  
Author(s):  
Xinxue Zhang ◽  
Xin Zhao ◽  
Junming Xu ◽  
Jun Ma ◽  
Zhe Liu ◽  
...  

Abstract Background: Micro(mi)RNAs play an essential role in the epithelial-mesenchymal transition (EMT) process in human cancers. This study aimed to uncover the regulatory mechanism of miR-1301-3p on EMT in pancreatic cancer (PC).Methods: GEO database (GSE31568, GSE41372, and GSE32688) and the PC cohort of The Cancer Genome Atlas were applied to discover the expression and prognostic role of miR-1301-3p. In the validation cohort, qRT-PCR was performed in 72 paired PC tissue samples. CCK-8, wound healing, and transwell migration assays were used to detect miR-1301-3p function on PC cells. Luciferase reporter assays and western blotting were performed to discover the potential target of miR-1301-3p on EMT.Results: Our study revealed that miR-1301-3p was downregulated in PC tissues compared with normal samples. A low level of miR-1301-3p was associated with malignant pathological differentiation, lymphatic metastasis, tumor residual, and unsatisfactory overall survival. Gene Ontology analyses indicated that miR-1301-3p possibly regulated cell cycle and adheren junction. In vitro assays showed that miR-1301-3p suppressed proliferation, migration, and invasion ability of PC cells. Mechanically, miR-1301-3p inhibits RhoA expression, and knockdown of RhoA upregulated E-cadherin; however, downregulated N-cadherin and vimentin level.Conclusions: MiR-1301-3p acts as a prognostic biomarker for PC and inhibits PC progression by targeting RhoA induced EMT process.


Author(s):  
Samriddhi Arora ◽  
Jyoti Tanwar ◽  
Nutan Sharma ◽  
Suman Saurav ◽  
Rajender K. Motiani

Pancreatic cancer (PC) is one of the most lethal forms of cancers with 5-year mean survival rate of less than 10%. Most of the PC associated deaths are due to metastasis to secondary sites. Calcium (Ca2+) signaling plays a critical role in regulating hallmarks of cancer progression including cell proliferation, migration and apoptotic resistance. Store operated Ca2+ entry (SOCE) mediated by Orai1/2/3 channels is a highly regulated and ubiquitous pathway responsible for Ca2+ influx into non-excitable cells. In this study, we performed extensive bioinformatic analysis of publicly available datasets and observed that Orai3 expression is inversely associated with the mean survival time of PC patients. Orai3 expression analysis in a battery of PC cell lines corroborated its differential expression profile. We then carried out thorough Ca2+ imaging experiments in 6 PC cell lines and found that Orai3 forms a functional SOCE in PC cells. Our in vitro functional assays show that Orai3 regulates PC cell cycle progression, apoptosis and migration. Most importantly, our in vivo xenograft studies demonstrate a critical role of Orai3 in PC tumor growth and secondary metastasis. Mechanistically, Orai3 controls G1 phase progression, matrix metalloproteinase expression and epithelial-mesenchymal transition in PC cells. Taken together, this study for the first time reports that Orai3 drives aggressive phenotypes of PC cells i.e. migration in vitro and metastasis in vivo. Considering that Orai3 expression is inversely associated with the PC patients survival time, it appears to be a highly attractive therapeutic target.


2020 ◽  
Author(s):  
Sisi Wei ◽  
Shiping Sun ◽  
Xinliang Zhou ◽  
Cong Zhang ◽  
Xiaoya Li ◽  
...  

Abstract A substantial fraction of transcripts are known as long noncoding RNAs (lncRNAs), and these transcripts play pivotal roles in the development of cancer. However, little information has been published regarding the functions of lncRNAs in oesophageal squamous cell carcinoma (ESCC) and the underlying mechanisms. In our previous studies, we demonstrated that small nucleolar RNA host gene 5 (SNHG5), a known lncRNA, is dysregulated in gastric cancer (GC). In this study, we explored the expression and function of SNHG5 in development of ESCC. SNHG5 was found to be downregulated in human ESCC tissues and cell lines, and this downregulation was associated with cancer progression, clinical outcomes and survival rates of ESCC patients. Furthermore, we also found that overexpression of SNHG5 significantly inhibited the proliferation, migration and invasion of ESCC cells in vivo and in vitro. Notably, we found that metastasis-associated protein 2 (MTA2) was pulled down by SNHG5 in ESCC cells using RNA pulldown assay. We also found that SNHG5 reversed the epithelial–mesenchymal transition by interacting with MTA2. In addition, overexpression of SNHG5 downregulated the transcription of MTA2 and caused its ubiquitin-mediated degradation. Thus, overexpression of MTA2 partially abrogated the effect of SNHG5 in ESCC cell lines. Furthermore, we found that MTA2 mRNA expression was significantly elevated in ESCC specimens, and a negative correlation between SNHG5 and MTA2 expression was detected. Overall, this study demonstrated, for the first time, that SNHG5-regulated MTA2 functions as an important player in the progression of ESCC and provide a new potential therapeutic strategy for ESCC.


Sign in / Sign up

Export Citation Format

Share Document