scholarly journals Inflammation and Kidney Injury in Diabetic African American Men

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Lei Cao ◽  
Ava Boston ◽  
Olugbemiga Jegede ◽  
Heather A. Newman ◽  
Scott H. Harrison ◽  
...  

African Americans are disproportionately burdened by diabetic kidney disease (DKD). However, little is known about the cellular and molecular mechanisms underlying the onset and progression of DKD in this population. The goal of the current study was to determine the association between specific inflammation markers and kidney injury in diabetic African American men. To this end, we recruited diabetic patients either with (n=20) or without (n=87) diagnosed kidney disease along with age-matched nondiabetic controls (n=81). Urinary albumin-to-creatinine ratios (UACRs) and estimated glomerular filtration rates (eGFR) were used for biochemical assessment of kidney function. We then measured plasma and urinary levels of seven inflammatory markers, including adiponectin, C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), TNF receptor 1 (TNFR1), TNF receptor 2 (TNFR2), interleukin-6 (IL-6), and intercellular cell adhesion molecule-1 (ICAM-1). Plasma levels of TNF-α, TNFR1, and TNFR2 were significantly higher in diabetics with macroalbuminuria compared to nondiabetic controls and diabetics with normoalbuminuria or microalbuminuria. Likewise, urinary levels of ICAM-1 were higher in diabetics with macroalbuminuria compared to the other groups. Indeed, urinary ICAM-1, plasma TNF-α, and adiponectin had moderate positive correlations with UACR while plasma TNFR1 and TNFR2 levels were strongly correlated with kidney injury, indicated by multiple biomarkers of kidney injury. In contrast, though plasma CRP was elevated in diabetic subjects relative to nondiabetic controls, its levels did not correlate with kidney injury. Together, these data suggest that inflammation, particularly that mediated by the TNF-α/NF-κB signaling axis, may play a role in the pathogenesis of DKD in African American men.

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Lei Cao ◽  
Rashin Sedighi ◽  
Ava Boston ◽  
Lakmini Premadasa ◽  
Jamilla Pinder ◽  
...  

Diabetes is the leading cause of chronic kidney disease. African Americans are disproportionately burdened by diabetic kidney disease (DKD) and end stage renal disease (ESRD). Disparities in DKD have genetic and socioeconomic components, yet its prevalence in African Americans is not adequately studied. The current study used multiple biomarkers of DKD to evaluate undiagnosed DKD in uninsured and underinsured African American men in Greensboro, North Carolina. Participants consisted of three groups: nondiabetic controls, diabetic patients without known kidney disease, and diabetic patients with diagnosed DKD. Our data reveal undiagnosed kidney injury in a significant proportion of the diabetic patients, based on levels of both plasma and urinary biomarkers of kidney injury, namely, urinary albumin to creatinine ratio, kidney injury molecule-1, cystatin C, and neutrophil gelatinase-associated lipocalin. We also found that the urinary levels of meprin A, meprin B, and two kidney meprin targets (nidogen-1 and monocytes chemoattractant protein-1) increased with severity of kidney injury, suggesting a potential role for meprin metalloproteases in the pathophysiology of DKD in this subpopulation. The study also demonstrates a need for more aggressive tests to assess kidney injury in uninsured diabetic patients to facilitate early diagnosis and targeted interventions that could slow progression to ESRD.


2021 ◽  
Vol 22 (9) ◽  
pp. 4374
Author(s):  
Tomoaki Takata ◽  
Hajime Isomoto

Diabetes mellitus is a major cause of chronic kidney disease and end-stage renal disease. However, the management of chronic kidney disease, particularly diabetes, requires vast improvements. Recently, sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally developed for the treatment of diabetes, have been shown to protect against kidney injury via glycemic control, as well as various other mechanisms, including blood pressure and hemodynamic regulation, protection from lipotoxicity, and uric acid control. As such, regulation of these mechanisms is recommended as an effective multidisciplinary approach for the treatment of diabetic patients with kidney disease. Thus, SGLT2 inhibitors are expected to become key drugs for treating diabetic kidney disease. This review summarizes the recent clinical evidence pertaining to SGLT2 inhibitors as well as the mechanisms underlying their renoprotective effects. Hence, the information contained herein will advance the current understanding regarding the pleiotropic effects of SGLT2 inhibitors, while promoting future research in the field.


2020 ◽  
Vol 9 (11) ◽  
pp. 3653
Author(s):  
Shungang Zhang ◽  
Joshua D. Breidenbach ◽  
Benjamin H. Russell ◽  
Jerrin George ◽  
Steven T. Haller

The cluster of differentiation 40 (CD40) is activated by the CD40 ligand (CD40L) in a variety of diverse cells types and regulates important processes associated with kidney disease. The CD40/CD40L signaling cascade has been comprehensively studied for its roles in immune functions, whereas the signaling axis involved in local kidney injury has only drawn attention in recent years. Clinical studies have revealed that circulating levels of soluble CD40L (sCD40L) are associated with renal function in the setting of kidney disease. Levels of the circulating CD40 receptor (sCD40), sCD40L, and local CD40 expression are tightly related to renal injury in different types of kidney disease. Additionally, various kidney cell types have been identified as non-professional antigen-presenting cells (APCs) that express CD40 on the cell membrane, which contributes to the interactions between immune cells and local kidney cells during the development of kidney injury. Although the potential for adverse CD40 signaling in kidney cells has been reported in several studies, a summary of those studies focusing on the role of CD40 signaling in the development of kidney disease is lacking. In this review, we describe the outcomes of recent studies and summarize the potential therapeutic methods for kidney disease which target CD40.


Author(s):  
Kianoush B. Kashani ◽  
Amy W. Williams

Renal failure is caused by acute kidney injury or chronic kidney disease. Acute kidney injury (AKI) is a common, devastating complication that increases mortality and morbidity among patients with various medical and surgical illnesses. Also known as acute renal failure, AKI is a rapid deterioration of kidney function that results in the accumulation of nitrogenous metabolites and medications and in electrolyte and acid-base imbalances. This chapter discusses the definition, epidemiology, pathophysiology, and etiology of AKI; the clinical approach to patients with AKI; and the management of AKI. Chronic kidney disease (CKD) has been categorized into 5 stages. When renal function decreases to stage 3, the complications of CKD become evident. These complications include hypertension, cardiovascular disease, lipid abnormalities, anemia, metabolic bone disease, and electrolyte disturbances. To prevent the progression of CKD, therapy must be directed toward preventing these complications and achieving adequate glucose control in diabetic patients with CKD.


2016 ◽  
Vol 310 (5) ◽  
pp. F416-F425 ◽  
Author(s):  
David P. Choma ◽  
Roberto Vanacore ◽  
Helen Naylor ◽  
Ian A. Zimmerman ◽  
Andrei Pavlichenko ◽  
...  

Kidney disease, a common complication of diabetes, associates with poor prognosis. Our previous animal model studies linked aquaporin (AQP)11 to acute kidney injury, hyperglycemia-induced renal impairment, and kidney disease in diabetes. Here, we report the AQP11 rs2276415 variant as a genetic factor placing type 2 diabetic patients at greater risk for the development of kidney disease. We performed two independent retrospective case-control studies in 1,075 diabetic and 1,619 nondiabetic individuals who were identified in the Synthetic Derivative Database with DNA samples in the BioVU DNA repository at Vanderbilt University (Nashville, TN). A χ2-test and multivariable logistic regression analysis with adjustments for age, sex, baseline serum creatinine, and underlying comorbid disease covariates showed a significant association between rs2276415 and the prevalence of any event of acute kidney injury and chronic kidney disease (CKD) in diabetic patients but not in patients without diabetes. This result was replicated in the second independent study. Diabetic CKD patients over 55 yrs old with the minor AQP11 allele had a significantly faster progression of estimated glomerular filtration rate decline than patients with the wild-type genotype. Three-dimensional structural analysis suggested a functional impairment of AQP11 with rs2276415, which could place diabetic patients at a higher risk for kidney disease. These studies identified rs2276415 as a candidate genetic factor predisposing patients with type 2 diabetes to CKD.


Blood ◽  
2010 ◽  
Vol 116 (9) ◽  
pp. 1397-1404 ◽  
Author(s):  
Eliot C. Heher ◽  
Nelson B. Goes ◽  
Thomas R. Spitzer ◽  
Noopur S. Raje ◽  
Benjamin D. Humphreys ◽  
...  

Plasma cell dyscrasias are frequently encountered malignancies often associated with kidney disease through the production of monoclonal immunoglobulin (Ig). Paraproteins can cause a remarkably diverse set of pathologic patterns in the kidney and recent progress has been made in explaining the molecular mechanisms of paraprotein-mediated kidney injury. Other recent advances in the field include the introduction of an assay for free light chains and the use of novel antiplasma cell agents that can reverse renal failure in some cases. The role of stem cell transplantation, plasma exchange, and kidney transplantation in the management of patients with paraprotein-related kidney disease continues to evolve.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1754
Author(s):  
Itaru Monno ◽  
Yoshio Ogura ◽  
Jing Xu ◽  
Daisuke Koya ◽  
Munehiro Kitada

Lifestyle improvement, including through exercise, has been recognized as an important mode of therapy for the suppression of diabetic kidney disease (DKD). However, the detailed molecular mechanisms by which exercise exerts beneficial effects in the suppression of DKD have not yet been fully elucidated. In this study, we investigate the effects of treadmill exercise training (TET) for 8 weeks (13 m/min, 30 min/day, 5 days/week) on kidney injuries of type 2 diabetic male rats with obesity (Wistar fatty (fa/fa) rats: WFRs) at 36 weeks of age. TET significantly suppressed the levels of albuminuria and urinary liver-type fatty-acid-binding protein (L-FABP), tubulointerstitial fibrosis, inflammation, and oxidative stress in the kidneys of WFRs. In addition, TET mitigated excessive apoptosis and restored autophagy in the renal cortex, as well as suppressed the development of morphological abnormalities in the mitochondria of proximal tubular cells, which were also accompanied by the restoration of AMP-activated kinase (AMPK) activity and suppression of the mechanistic target of rapamycin complex 1 (mTORC1). In conclusion, TET ameliorates diabetes-induced kidney injury in type 2 diabetic fatty rats.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Jing-Ying Zhao ◽  
Yu-Bin Wu

Endoplasmic reticulum stress (ERS) is strongly associated with acute kidney injury (AKI) to chronic kidney disease (CKD) transition. Huaier extract (HE) protects against kidney injury; albeit, the underlying mechanism is unknown. We hypothesized that HE reduces kidney injury by inhibiting ERS. In this study, using an AKI-CKD mouse model of ischemia-reperfusion injury (IRI), we evaluated the effect of HE on AKI-CKD transition. We also explored the underlying molecular mechanisms in this animal model and in the HK-2 human kidney cell line. The results showed that HE treatment improved the renal function, demonstrated by a significant decrease in serum creatinine levels after IRI. HE appreciably reduced the degree of kidney injury and fibrosis and restored the expression of the microRNA miR-1271 after IRI. Furthermore, HE reduced the expression of ERS markers glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) and inhibited apoptosis in the IRI group. This in vivo effect was supported by in vitro results in which HE inhibited apoptosis and decreased the expression of CHOP and GRP78 induced by ERS. We demonstrated that CHOP is a target of miR-1271. In conclusion, HE reduces kidney injury, probably by inhibiting apoptosis and decreasing the expression of GRP78 and CHOP via miR-1271 upregulation.


2019 ◽  
Vol 13 (4) ◽  
pp. 607-612
Author(s):  
Alfons Segarra-Medrano ◽  
Marisa Martin ◽  
Irene Agraz ◽  
Mercè Vilaprinyó ◽  
Betty Chamoun ◽  
...  

Abstract Background Height-adjusted total kidney volume (htTKV) is considered as the best predictor of kidney function in patients with autosomal dominant polycystic kidney disease (ADPKD), but its limited predictive capacity stresses the need to find new biomarkers of ADPKD progression. The aim of this study was to investigate urinary biomarkers of ADPKD progression. Methods This observational study included ADPKD patients, and two comparator groups of ischaemic and non-ischaemic kidney injury: benign nephroangiosclerosis patients and non-ischaemic chronic kidney disease (CKD) patients. Proteinuria, htTKV and urinary levels of molecules are associated with ischaemia and/or tubular injury. The slope of estimated glomerular filtration rate (eGFR) was used as a dependent variable in univariate and multivariate models of kidney function decline. Results The study included 130 patients with ADPKD, 55 with nephroangiosclerosis and 40 with non-ischaemic CKD. All patients had increased urinary concentrations of biomarkers associated with tubular lesions (liver fatty acid-binding protein, kidney injury molecule-1, β2-microglobulin) and molecules overexpressed under ischaemic conditions [hypoxia-inducible factor-1α, vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1)]. These biomarkers correlated positively with htTKV and negatively with the eGFR slope. htTKV was the single best predictor of the eGFR slope variability in univariate analyses. However, a multivariate model including urinary levels of β2-microglobulin, MCP-1 and VEGF improved the capacity to predict the decline of eGFR in ADPKD patients compared with htTKV alone. Conclusions The urinary levels of molecules associated with either renal ischaemia (VEGF and MCP-1) or tubular damage (β2-microglobulin) are associated with renal function deterioration in ADPKD patients, and are, therefore, candidates as biomarkers of ADPKD progression.


2018 ◽  
Vol 25 (3) ◽  
pp. 367-377 ◽  
Author(s):  
Karmin O ◽  
Yaw L. Siow

Homocysteine (Hcy) and hydrogen sulfide (H2S) are important molecules produced during the metabolism of sulfur-containing amino acids. Hcy metabolism is central to the supply of methyl groups that are essential for biological function. Hcy can be either regenerated to methionine or metabolized to cysteine, a precursor for glutathione synthesis. Cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) play a crucial role in metabolizing Hcy to cysteine through the transsulfuration pathway. These two enzymes are also responsible for H2S generation through desulfuration reactions. H2S, at physiological levels serves as a gaseous mediator and has multifaceted effects. Metabolic imbalance of Hcy and H2S has been implicated in pathological conditions including oxidative stress, inflammation, cardiovascular and cerebral dysfunction, fatty liver disease and ischemiareperfusion injury. Organs such as liver, kidney, gut and pancreas contain all the enzymes that are required for Hcy metabolism. The kidney plays an important role in removing Hcy from the circulation. Hyperhomocysteinemia, a condition of elevated blood Hcy level, is a common clinical finding in patients with chronic kidney disease (CKD) or acute kidney injury (AKI), the latter is often caused by ischemia-reperfusion. This paper reviews exiting literatures regarding (1) the role of kidney in regulating Hcy and H2S metabolism; (2) disruption of sulfur-containing amino acid metabolism during ischemiareperfusion; (3) impact of metabolic imbalance of Hcy and H2S on kidney function. Better understanding of molecular mechanisms that regulate Hcy and H2S metabolism under physiological and pathophysiological conditions will help improve therapeutic strategies for patients with kidney disease or other organ injuries.


Sign in / Sign up

Export Citation Format

Share Document