scholarly journals Mechanical Properties of Bump-Prone Coal with Different Porosities and Its Acoustic Emission-Charge Induction Characteristics under Uniaxial Compression

2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Xin Ding ◽  
Xiaochun Xiao ◽  
Xiangfeng Lv ◽  
Di Wu ◽  
Jun Xu

Discreteness of mechanical property affected by the intimal damage, which emerged with various degrees of material composition and geological structure, is the difference in porosity macroscopically. Although various porosities directly affect fracture activity, damage evolution and mechanical behaviour of coal bring on the bump-prone assessment error, and disaster happened “ahead of time” in deep underground energy source exploration, little research to date has focused on them. In this paper, the mechanical properties of bump-prone coal samples with different porosities were studied by uniaxial compression test and the initial damage caused by gangue and organic fracture in coal observed by CT. The result indicated that the evolution of coal strength and the logarithm of porosity were expressed by a linear negative correlation and the elastic modules decreased with the initial damage increased. A new quantitative description of damage variables is established by theoretical derivation to reflect the process of cracks formation and expiation in coal, based on volumetric strain and initial porosity. According to the Mohr–Coulomb principle, the effective stress of coal sample with higher the porosity is more likely to reach the shear strength and destruction. The amplitudes and accumulation of AE energy and charge pulse indeed vary with the stress loading stages and strength. The frequency of AE waveform is dominated in three bands (1∼50 kHz, 100∼150 kHz, and 175∼200 kHz) and that of charge induction had one frequency band 1∼100 Hz, and the amplitudes of time domain and main frequency components increased with stress improved. Both of them originated from cracks and belong to homologous signals, crack development bound to be accompanied by stress wavelet, not necessarily free charge; meanwhile, charge pulse being emerged means there must be cracks interaction and the acoustic emission signals are generated prior to charge induction.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hai-qing Shuang ◽  
Shu-gang Li ◽  
Lang Liu ◽  
Gao-feng Chen ◽  
Ki-Il Song

Acoustic emission has a direct correspondence to the internal damage of a material. To determine the effects of the loading rate on the mechanical properties of rock, the initial damage was characterized using the acoustic emission technique when a uniaxial preloading was imposed on a cylindrical rock sample. On this basis, the uniaxial compression test was conducted on sandstone that contains initial damage induced under a range of loading rates. The effects of the initial damage and loading rate on the mechanical properties of rock were analyzed. The uniaxial preloading generated randomly distributed microcracks in the natural rock. The results showed that the acoustic emission and positioning technique can characterize accurately the damage and its position due to preloading. The development of microcracks was found to be strongly dependent on the loading rate. Moreover, the loading rate accelerated the degradation of the rock strength. The effects of the loading rate and initial damage on the mechanical properties of rock are a complicated coupled process. From the experimental test result, a constitutive equation was constructed based on the damage mechanics.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Man Lei ◽  
Fa-ning Dang ◽  
Haibin Xue ◽  
Mingming He

In order to study the mechanical properties of granite at the micro- and nanoscale, the load-displacement curve, residual indentation information, and component information of the quartz, feldspar, and mica in granite were obtained using a nanoindentation test, a scanning electron microscope (SEM), and X-ray diffraction (XRD). The elastic modulus and the hardness of each component of the granite were obtained through statistical analysis. Treating rock as a composite material, the relation between the macro- and microscopic mechanical properties of rock was established through the theory of micromechanical homogenization. The transition from micromechanical parameters to macromechanical parameters was realized. The equivalent elastic modulus and Poisson’s ratio of the granite were obtained by the Self-consistent method, the Dilute method, and the Mori-Tanaka method. Compared with the elastic modulus and the Poisson ratio of granites measured by a uniaxial compression test and the available data, the applicability of the three methods were analyzed. The results show that the elastic modulus and hardness of the quartz in the granite is the largest, the feldspar is the second, the mica is the smallest. The main mineral contents in granite were analyzed using the semiquantitative method by XRD and the rock slice identification test. The elastic modulus and the Poisson ratio of granite calculated by three linear homogenization methods are consistent with those of the uniaxial compression test. After comparing the calculation results of the three methods, it is found that the Mori-Tanaka method is more suitable for studying the mechanical properties of rock materials. This method has an important theoretical significance and practical value for studying the quantitative relationship between macro- and micromechanical indexes of brittle materials. The research results provide a new method and an important reference for studying the macro-, micro-, and nanomechanical properties of rock.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jianxun Chen ◽  
Qingsong Wang ◽  
Jiaqi Guo ◽  
Yanbin Luo ◽  
Yao Li ◽  
...  

Firstly, I-RPT ultrasonic detector was used to test the wave velocity of karst limestone with different initial microstructure and water content. Then, RMT-150B rock testing machine and DS2-16B acoustic emission system were used to test the acoustic emission (AE) under uniaxial compression. Mechanical properties and AE characteristics were obtained during rock failure. The detailed relationship between stress-strain and AE characteristics was studied in this paper. Research results indicated the following: (1) For samples with many primary fissures and defects, wave velocity in dry state was larger than that in its natural state. From natural state to saturated state, the wave velocity tended to increase. For samples with good integrity, wave velocity increased with increasing of water content. (2) In the dry state, the samples presented tension failure. In saturated state, the samples presented tension-shear failure. For samples with cracks and good integrity, samples showed brittle failure. For samples with many corrosion pores which showed ductile damage under natural and saturated state, the spalling phenomenon was enhanced under saturated state. (3) With increasing of water content, the peak stress and AE peak reduced dramatically. In brittle failure, AE peak could be considered a sign of failure. In ductile failure, AE activity decreased gradually with the decrease of stress. (4) The mechanical properties and AE characteristics corresponding to four main fracture propagation types were also discussed.


2012 ◽  
Vol 232 ◽  
pp. 24-27
Author(s):  
Zong Zhan Li ◽  
Jun Lin Tao ◽  
Yi Li

This paper makes the acoustic emission of granite under uniaxial compression and splitting tensile test by electro-hydraulic testing machine and AE .We studied the relationship of uniaxial compressive strength and splitting tensile strength with the loading rate and AE characteristics of granite .The results show that uniaxial compressive strength and peak strain raise with loading rate, the AE energy gradually increases and get maximum in the 30% of the peak stress in the process of uniaxial compression test, and in the splitting tensile AE energy generates in the initial loading and gets maximum when the granite brittle fracture.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xin Liu ◽  
Yu-Zhou Zheng ◽  
Qin Fang ◽  
Heng-Bo Xiang ◽  
Hai-Chun Yan

To explore the influence of microexpansive concrete self-stress on the performance of steel pipe concrete, the expansion rate test of microexpansive concrete confined by steel tube was carried out with different expansion rates. Then, the mechanical properties of high-strength steel tube-confined microexpansive concrete (HSTCMC) short columns were conducted by the uniaxial compression test. The length-to-diameter ratio, the expansion rate of the microexpansive concrete, and the steel tube thickness were investigated in the study. Furthermore, the ABAQUS software was employed to analyze the microexpansive mechanism of the concrete, and it was verified by the uniaxial compression test. The test results show that the concrete possesses a remarkable volume expansion phenomenon, which was up to 150 με after four days of maintenance time. The mechanical properties of the HSTCMC short columns were greatly improved compared to the control RC pier. The yield and ultimate strength of the HSTCMC short columns can be enhanced to 8.9% and 14.6%, and with the content of expansive agent that increased from 8% to 12%. The finite element analysis results highlighted that the end constraint at the two ends has the biggest influence on the mechanical performance of the HSTCMC short columns, followed by the thickness of the steel tube and the content of the expansive agent. It should be noted that the self-stress of microexpansive concrete will be decreased with the increase in the length-to-diameter ratio, when the length-to-diameter ratio is less than four. Furthermore, the constraint effect of the circular steel tube on the microexpansive concrete is better than that of the rectangular section steel tube.


2001 ◽  
Vol 38 (2) ◽  
pp. 427-440 ◽  
Author(s):  
G M Nagaraja Rao ◽  
C RL Murthy

One of the methods of improving the mechanical properties of ceramics is to introduce a defective structure that acts as a restraint for the propagation of cracks. In the present study a detailed investigation was carried out by introducing a defective structure in rock to determine if there is any improvement in properties similar to ceramics. Granite was chosen for the investigation, and the microcracks were introduced by a heating and cooling cycle. Uniaxial compression tests have shown that granite thermally treated to 200°C shows the highest strength, and the strength of granite treated to 400°C is comparable to that of unheated granite. Both ultrasonic images and acoustic-emission monitoring show that for thermally treated samples the stress-induced microcrack and macrocrack nucleation and their growth are retarded. The variations in mechanical properties are explained based on the concept of toughening and degradation. Uniaxial compression tests on unheated and thermally treated granite samples have clearly established the dual role of microcracks, which operate in the toughening and degradation mechanisms.Key words: thermal treatment, microcrack, inelastic strain, ultrasonic C-scan imaging, acoustic emission, toughening.


Sign in / Sign up

Export Citation Format

Share Document