scholarly journals Design of Augmented Nonlinear PD Controller of Delta/Par4-Like Robot

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Amjad J. Humaidi ◽  
Ahmed Ibraheem Abdulkareem

This work presents the design of two control schemes for a Delta/Par4-like parallel robot: augmented PD (APD) controller and augmented nonlinear PD (ANPD) controller. The stability of parallel robot based on nonlinear PD controller has been analyzed and proved based on Lyapunov method. A comparison study between APD and ANPD controllers has been made in terms of performance and accuracy improvement of trajectory tracking. Also, another comparison study has been presented between augmented nonlinear PD (ANPD) controller and nonaugmented nonlinear PD (NANPD) controller in order to show the enhancement of introducing the augmented structure on dynamic performance and trajectory tracking accuracy. The effectiveness of augmented PD controllers (APD and ANPD) and nonaugmented nonlinear PD (NANPD) controller for the considered parallel robot are verified via simulation within the MATLAB environment.

2016 ◽  
Vol 64 (1) ◽  
pp. 189-196 ◽  
Author(s):  
P.D. Mandić ◽  
M.P. Lazarević ◽  
T.B. Šekara

Abstract In this paper, the stability problem of Furuta pendulum controlled by the fractional order PD controller is presented. A mathematical model of rotational inverted pendulum is derived and the fractional order PD controller is introduced in order to stabilize the same. The problem of asymptotic stability of a closed loop system is solved using the D-decomposition approach. On the basis of this method, analytical forms expressing the boundaries of stability regions in the parameters space have been determined. The D-decomposition method is investigated for linear fractional order systems and for the case of linear parameter dependence. In addition, some results for the case of nonlinear parameter dependence are presented. An example is given and tests are made in order to confirm that stability domains have been well calculated. When the stability regions have been determined, tuning of the fractional order PD controller can be carried out.


Author(s):  
Mingkun Wu ◽  
Jiangping Mei ◽  
Jinlu Ni ◽  
Weizhong Hu

Delta parallel robot is widely used in the manufacturing process of food, medicine, electronics and military industries, which is a highly nonlinear system with strongly uncertain dynamics. Therefore, there are many difficulties in the controller design of delta robot. Based on the simplified dynamic model, a nonlinear PD+ controller with nonlinear disturbance observer is proposed for Delta parallel robot in this article, which can realize high-precision trajectory tracking in high-speed and high-acceleration motion. Then, the asymptotic stability of the closed-loop system’s equilibrium point is proven by utilizing Lyapunov techniques and LaSalle’s invariance theorem. It is obvious that the proposed controller is significantly less dependent on the accuracy of the dynamic model. Besides, a disturbance observer based on the generalized momentum is constructed, which can effectively observe and compensate the disturbances. What’s more, the constructed disturbance observer avoids the calculation of the inverse of inertia matrix, which will greatly improve the response speed of the controller. The simulation results show that the proposed controller can assure better trajectory tracking accuracy in high-speed and high-acceleration motion. And the disturbance observer can effectively estimate the disturbance. The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article:This work was supported by the National Natural Science Foundation of China (grant number51474320).


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2401
Author(s):  
Yasir Mehmood ◽  
Jawad Aslam ◽  
Nasim Ullah ◽  
Md. Shahariar Chowdhury ◽  
Kuaanan Techato ◽  
...  

Recently, formation flying of multiple unmanned aerial vehicles (UAVs) found numerous applications in various areas such as surveillance, industrial automation and disaster management. The accuracy and reliability for performing group tasks by multiple UAVs is highly dependent on the applied control strategy. The formation and trajectories of multiple UAVs are governed by two separate controllers, namely formation and trajectory tracking controllers respectively. In presence of environmental effects, disturbances due to wind and parametric uncertainties, the controller design process is a challenging task. This article proposes a robust adaptive formation and trajectory tacking control of multiple quad-rotor UAVs using super twisting sliding mode control method. In the proposed design, Lyapunov function-based adaptive disturbance estimators are used to compensate for the effects of external disturbances and parametric uncertainties. The stability of the proposed controllers is guaranteed using Lyapunov theorems. Two variants of the control schemes, namely fixed gain super twisting SMC (STSMC) and adaptive super twisting SMC (ASTSMC) are tested using numerical simulations performed in MATLAB/Simulink. From the results presented, it is verified that in presence of disturbances, the proposed ASTSMC controller exhibits enhanced robustness as compared to the fixed gain STSMC.


2019 ◽  
Vol 12 (4) ◽  
pp. 339-349
Author(s):  
Junguo Wang ◽  
Daoping Gong ◽  
Rui Sun ◽  
Yongxiang Zhao

Background: With the rapid development of the high-speed railway, the dynamic performance such as running stability and safety of the high-speed train is increasingly important. This paper focuses on the dynamic performance of high-speed Electric Multiple Unit (EMU), especially the dynamic characteristics of the bogie frame and car body. Various patents have been discussed in this article. Objective: To develop the Multi-Body System (MBS) model of EMU, verify whether the dynamic performance meets the actual operation requirements, and provide some useful information for dynamics and structural design of the proposed EMU. Methods: According to the technical characteristics of a typical EMU, a MBS model is established via SIMPACK, and the measured data of China high-speed railway is taken as the excitation of track random irregularity. To test the dynamic performance of the EMU, including the stability and safety, some evaluation indexes such as wheel-axle lateral forces, wheel-axle lateral vertical forces, derailment coefficients and wheel unloading rates are also calculated and analyzed in detail. Results: The MBS model of EMU has better dynamic performance especially curving performance, and some evaluation indexes of the stability and safety have also reached China’s high-speed railway standards. Conclusion: The effectiveness of the proposed MBS model is verified, and the dynamic performance of the MBS model can meet the design requirements of high-speed EMU.


2021 ◽  
Vol 54 (3-4) ◽  
pp. 303-323
Author(s):  
Amjad J Humaidi ◽  
Huda T Najem ◽  
Ayad Q Al-Dujaili ◽  
Daniel A Pereira ◽  
Ibraheem Kasim Ibraheem ◽  
...  

This paper presents control design based on an Interval Type-2 Fuzzy Logic (IT2FL) for the trajectory tracking of 3-RRR (3-Revolute-Revolute-Revolute) planar parallel robot. The design of Type-1 Fuzzy Logic Controller (T1FLC) is also considered for the purpose of comparison with the IT2FLC in terms of robustness and trajectory tracking characteristics. The scaling factors in the output and input of T1FL and IT2FL controllers play a vital role in improving the performance of the closed-loop system. However, using trial-and-error procedure for tuning these design parameters is exhaustive and hence an optimization technique is applied to achieve their optimal values and to reach an improved performance. In this study, Social Spider Optimization (SSO) algorithm is proposed as a useful tool to tune the parameters of proportional-derivative (PD) versions of both IT2FLC and T1FLC. Two scenarios, based on two square desired trajectories (with and without disturbance), have been tested to evaluate the tracking performance and robustness characteristics of proposed controllers. The effectiveness of controllers have been verified via numerical simulations based on MATLAB/SIMULINK programming software, which showed the superior of IT2FLC in terms of robustness and tracking errors.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Shuai Yang ◽  
Haijun Jiang ◽  
Cheng Hu ◽  
Juan Yu ◽  
Jiarong Li

Abstract In this paper, a novel rumor-spreading model is proposed under bilingual environment and heterogenous networks, which considers that exposures may be converted to spreaders or stiflers at a set rate. Firstly, the nonnegativity and boundedness of the solution for rumor-spreading model are proved by reductio ad absurdum. Secondly, both the basic reproduction number and the stability of the rumor-free equilibrium are systematically discussed. Whereafter, the global stability of rumor-prevailing equilibrium is explored by utilizing Lyapunov method and LaSalle’s invariance principle. Finally, the sensitivity analysis and the numerical simulation are respectively presented to analyze the impact of model parameters and illustrate the validity of theoretical results.


2019 ◽  
Vol 12 (06) ◽  
pp. 1950067 ◽  
Author(s):  
Zhaohua Wu ◽  
Zhiming Wang ◽  
Tiejun Zhou

Fractional-order gene regulatory networks with time delay (DFGRNs) have proven that they are more suitable to model gene regulation mechanism than integer-order. In this paper, a novel DFGRN is proposed. The existence and uniqueness of the equilibrium point for the DFGRN are proved under certain conditions. On this basis, the conditions on the global asymptotic stability are established by using the Lyapunov method and comparison theorem for the DFGRN, and the stability conditions are dependent on the fractional-order [Formula: see text]. Finally, numerical simulations show that the obtained results are reasonable.


Author(s):  
Nasim Ullah ◽  
Irfan Sami ◽  
Wang Shaoping ◽  
Hamid Mukhtar ◽  
Xingjian Wang ◽  
...  

This article proposes a computationally efficient adaptive robust control scheme for a quad-rotor with cable-suspended payloads. Motion of payload introduces unknown disturbances that affect the performance of the quad-rotor controlled with conventional schemes, thus novel adaptive robust controllers with both integer- and fractional-order dynamics are proposed for the trajectory tracking of quad-rotor with cable-suspended payload. The disturbances acting on quad-rotor due to the payload motion are estimated by utilizing adaptive laws derived from integer- and fractional-order Lyapunov functions. The stability of the proposed control systems is guaranteed using integer- and fractional-order Lyapunov theorems. Overall, three variants of the control schemes, namely adaptive fractional-order sliding mode (AFSMC), adaptive sliding mode (ASMC), and classical Sliding mode controllers (SMC)s) are tested using processor in the loop experiments, and based on the two performance indicators, namely robustness and computational resource utilization, the best control scheme is evaluated. From the results presented, it is verified that ASMC scheme exhibits comparable robustness as of SMC and AFSMC, while it utilizes less sources as compared to AFSMC.


Sign in / Sign up

Export Citation Format

Share Document