scholarly journals Coenzyme Q10 Ameliorates Pancreatic Fibrosis via the ROS-Triggered mTOR Signaling Pathway

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ran Xue ◽  
Jianxin Wang ◽  
Lixin Yang ◽  
Xinjuan Liu ◽  
Yan Gao ◽  
...  

Aim. Pancreatic stellate cells (PSCs) play a pivotal role in pancreatic fibrosis. Any remedies that inhibit the activation of PSCs can be potential candidates for therapeutic strategies in pancreatic fibrosis-related pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis (CP). Our study is aimed at exploring the protective effect of coenzyme Q10 (CoQ10) against pancreatic fibrosis. Methods. Pancreatic fibrosis was induced by 20% L-arginine (250 mg/100 g) at 1 h intervals twice per week for 8 weeks in C57BL/6 mice. CoQ10 was administered for 4 weeks. Isolated primary PSCs from C57BL/6 mice were treated with 100 μM CoQ10 for 72 h, as well as Rosup and specific inhibitors. The effects of CoQ10 on the activation of PSCs, autophagy, collagen deposition, histological changes, and oxidative stress were analyzed by western blotting, biochemical estimations, immunofluorescence staining, and hematoxylin-eosin, Masson, and Sirius red staining, as well as with a reactive oxygen species (ROS) assay. Results. Pretreatment and posttreatment of CoQ10 decreased autophagy, activation of PSCs, oxidative stress, histological changes, and collagen deposition in the CP mouse model. In primary PSCs, expression levels of p-PI3K, p-AKT, and p-mTOR were upregulated with CoQ10. A rescue experiment using specific inhibitors of the PI3K-AKT-mTOR pathway demonstrated that the PI3K-AKT-mTOR signaling pathway was the underlying mechanism by which CoQ10 ameliorated fibrosis. With the addition of Rosup, expression levels of the autophagy biomarkers LC3 and Atg5 were elevated. Meanwhile, the levels of p-PI3K, p-AKT, and p-mTOR were lower. Conclusions. Our findings demonstrated that CoQ10 alleviates pancreatic fibrosis by the ROS-triggered PI3K/AKT/mTOR signaling pathway. CoQ10 may be a therapeutic candidate for antifibrotic methods.

Author(s):  
Dongmei Zhan ◽  
Tengyang Ni ◽  
Haibo Wang ◽  
Mengying Lv ◽  
Masataka Sunagawa ◽  
...  

Background: This study aimed to determine the effect and mechanism of Celastrol inhibiting the proliferation and decreases drug resistance of cisplatin-resistant gastric cancer cells. Objective: To explore the effect and mechanism of Celastrol on proliferation and drug resistance of human gastric cancer cisplatin-resistant cells SGC7901/DDP. Methods: The thiazole blue (MTT) method was used to detect the sensitivity of human gastric cancer cisplatin-resistant cells SGC7901/DPP to cisplatin and Celastrol to determine the Drug resistance index (DRI). According to the half inhibitory concentration (IC50) value, the action concentration of the following experimental drugs was set to reduce the cytotoxicity; Annexin V-FITC/PI double staining method was used to detect the apoptosis of SGC7901/DDP cells induced by Celastrol; Western Blot was used to examine the expression levels of P-glycoprotein (P-gp), Multidrug Resistance Associated Protein 1 (MRP1), Breast Cancer Resistance Associated Protein (Breast Cancer Resistance)-relative protein (BCRP), and mechanistic Target of Rapamycin (mTOR) pathway related proteins; Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression levels of P-gp, MRP1, and BCRP. Results: (1) Compared with the control group (We set the untreated group as the control group), the proliferation of the SGC7901/DPP cells was significantly inhibited after treating with 0.1-6.4μmol/L Celastrol in a time- and concentration-dependent manner (P<0.05). The Drug resistance index DRI of the SGC7901/DPP cells to DDP was 5.64. (2) Compared with the control group, Celastrol could significantly inhibit the proliferation and induce the apoptosis of the SGC7901/DPP cells (P<0.05). (3) The mRNA and protein expression levels of P-gp, MRP1, and BCRP in the SGC7901/DPP cells were significantly higher than those in the SGC7901 cells. However, after treating with Celastrol, the expression levels of P-gp, MRP1, and BCRP in the SGC7901/DPP cells were significantly reduced (P<0.05). (4) Compared with the control group, the Celastrol treatment also reduced the expression of the mTOR signaling pathway related proteins, suggesting that the mTOR signaling pathway may be involved in the process of Celastrol inhibiting the proliferation of the SGC7901/DDP cells and reducing their drug resistance. (5) Significantly, the combination of Celastrol and DDP reduced the expression of P-gp, MRP1, and BCRP in the SGC7901/DPP cells. Conclusion: Celastrol can inhibit the proliferation of the SGC7901/DDP cells, induce their apoptosis, and reduce the expression of drug resistance genes, probably by inhibiting the expression of the proteins related to the mTOR signaling pathway.


2021 ◽  
Author(s):  
Huanfang Fan ◽  
Dehui Li ◽  
Na Guo ◽  
Chunxia Sun ◽  
Jingfei Dong ◽  
...  

Abstract Objective. To study the inhibitory effect of Xihuang Pill on the development of DMBA combined estrogen and progesterone induced breast precancerous lesions rats by PI3K/AKT/mTOR signaling pathway, and to explore the effect of Xihuang Pill in preventing and treating breast cancer. Method. Establishment of a rat model of breast precancerous lesion with DMBA combined estrogen and progesterone sequential induction for 10 weeks. Xihuang Pill was administered by gavage continuously for 4 weeks. Take rat breast tissue and stain with hematoxylin- eosin (HE). The pathomorphological changes were observed with light microscope; TUNEL staining to detect cell apoptosis in breast tissue; Western blot was used to detect the protein expression of P-PI3K, P-AKT (S473), P-AKT (T308), PTEN, P-Tuberin/TSC2, P-Tuberin (p-S939), p-mTOR, P-4E-BP1 in breast tissues. The qRT-PCR was used to detect the gene expression of PTEN mRNA and VEGF mRNA. Immunohistochemistry was used to detect the protein expression of P-S6, p-p70s6k and VEGF. Result. Compared with the disease model group, the low, middle and high dose Xihuang Pill groups could significantly reduce the degree of breast pathology, and the number of apoptosis of breast precancerous lesions cells increased with the increase of Xihuang Pill dose; The expression levels of P-PI3K, P-AKT (S473), P-AKT (T308), p-mTOR, P-4E-BP1, p-S6, p-p70S6K, VEGF protein and VEGF mRNA dropped with the increase of Xihuang Pill dose. The expression levels of PTEN, P-Tuberin/TSC2, P-Tuberin (p-S939) protein and PTEN mRNA elevated with the increase of Xihuang Pill dose. Conclusion. Xihuang Pill can promote the apoptosis of breast precancerous lesion cells and reduce the proliferation of vascular endothelial cells, and then inhibit the progression of breast precancerous lesions. Its mechanism probably associated with the regulation of PI3K/AKT/mTOR pathway related gene protein expression.


2021 ◽  
Author(s):  
De-hui Li ◽  
Huan-fang Fan ◽  
Na Guo ◽  
Chun-xia Sun ◽  
Jing-fei Dong ◽  
...  

Abstract Background:To study the inhibitory effect of Xihuang pill on the development of DMBA combined with oestrogen- and progesterone-induced breast precancerous lesions in rats by the PI3K/AKT/mTOR signaling pathway and to explore the effect of Xihuang pill in preventing and treating breast cancer. Method: Establishment of a rat model of precancerous breast lesions with DMBA combined with oestrogen and progesterone sequential induction for 10 weeks. Xihuang pill was administered continuously by gavage for 4 weeks. Rat breast tissue was stained with haematoxylin-eosin (HE). The pathomorphological changes were observed with a light microscope. TUNEL staining was used to detect cell apoptosis in breast tissue. Western blotting was used to detect the protein expression of P-PI3K, P-AKT (S473), P-AKT (T308), PTEN, P-tuberin/TSC2, P-tuberin (p-S939), p-mTOR, and P-4E-BP1 in breast tissues. qRT-PCR was used to detect the gene expression of PTEN mRNA and VEGF mRNA. Immunohistochemistry was used to detect the protein expression of P-S6, p-p70s6k and VEGF.Result:Compared with the disease model group, the low-, middle- and high-dose Xihuang pill groups could significantly reduce the degree of breast pathology, and the number of apoptotic precancerous breast lesion cells increased with increasing Xihuang pill dose. The expression levels of P-PI3K, P-AKT (S473), P-AKT (T308), p-mTOR, P-4E-BP1, p-S6, p-p70S6K, VEGF protein and VEGF mRNA dropped with increasing Xihuang pill dose. The expression levels of PTEN, P-tuberin/TSC2, P-tuberin (p-S939) protein and PTEN mRNA increased with increasing Xihuang pill dose. Conclusion:Xihuang pill can promote the apoptosis of precancerous breast lesion cells, reduce the proliferation of vascular endothelial cells, and then inhibit the progression of precancerous breast lesions. Its mechanism is probably associated with the regulation of the PI3K/AKT/mTOR pathway related protein expression.


2021 ◽  
Author(s):  
Ruijie Zhang ◽  
Nana Zhang ◽  
Xiaoqing Dong ◽  
Xin Chen ◽  
Jing Ma ◽  
...  

Abstract Oxidative stress is closely related to the pathogenesis of Parkinson's disease (PD), a typical neurodegenerative disease. NADPH oxidase 2 (NOX2) is involved in hydrogen peroxide (H2O2) generation. Recently, we have reported that H2O2 and PD toxins, including 6-hydroxydopamine (6-OHDA), 1-Methyl-4-phenylpyridin-1-ium (MPP+) and rotenone, induce neuronal apoptosis by inhibiting mTOR pathway. Here, we show that 6-OHDA, MPP+ or rotenone induced H2O2 generation by upregulation of NOX2 and its regulatory proteins (p22phox, p40phox, p47phox, p67phox, and Rac1), leading to apoptotic cell death in PC12 cells and primary neurons. Pretreatment with catalase, a H2O2-scavenging enzyme, significantly blocked PD toxins-evoked NOX2-derived H2O2, thereby hindering activation of AMPK, inhibition of Akt/mTOR, induction of apoptosis in neuronal cells. Similar events were also seen in the cells pretreated with Mito-TEMPO, a mitochondria-specific superoxide scavenger, implying a mitochondrial H2O2-dependent mechanism involved. Further research revealed that inhibiting NOX2 with apocynin or silencing NOX2 attenuated the effects of PD toxins on AMPK/Akt/mTOR and apoptosis in the cells. Of importance, ectopic expression of constitutively active Akt or dominant negative AMPKα, or inhibition of AMPK with compound C suppressed PD toxins-induced expression of NOX2 and its regulatory proteins, as well as consequential H2O2 and apoptosis in the cells. Taken together, these results indicate that certain PD toxins can impede the AMPK/Akt-mTOR signaling pathway leading to neuronal apoptosis by eliciting NOX2-derived H2O2. Our findings suggest that neuronal loss in PD may be prevented by regulating of NOX2, AMPK/Akt-mTOR signaling and/or administering antioxidants to ameliorate oxidative stress.


2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Jin Yan ◽  
Disi Deng ◽  
Yeke Wu ◽  
Keming Wu ◽  
Jie Qu ◽  
...  

Abstract Disrupted follicular development may result in increased follicular atresia, which is a crucial mechanism of various ovarian pathologies. It has been demonstrated that oxidative stress is associated with disrupted follicular development. Catalpol is a natural compound that has been found to possess antioxidative stress. However, the effects of catalpol on oxidative stress-induced disrupted follicular development remain unclear. In the present study, we evaluated the protective effect of catalpol on hydrogen peroxide (H2O2)-induced oxidative damage in granulosa cells (GCs), which play crucial roles in the follicular development. Our results showed that catalpol significantly improved cell viability, reduced reactive oxygen species (ROS) and malondialdehyde (MDA) production, and elevated superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in H2O2-induced GCs. Catalpol treatment caused significant increase in bcl-2 expression, and decreases in bax and caspase-9 expressions. Compared with the H2O2-induced GCs, caspase-3 activity in catalpol-treated cells was markedly decreased. Furthermore, catalpol caused significant activation of PI3K/Akt/mTOR pathway in GCs in response to H2O2 stimulation. Additionally, inhibition of this pathway reversed the inhibitory effects of catalpol on H2O2-induced oxidative injury and apoptosis in GCs. In conclusion, these findings suggested that catalpol protected GCs from H2O2-induced oxidative injury and apoptosis via activating PI3K/Akt/mTOR signaling pathway. Thus, catalpol might serve as a therapeutic approach for regulating disrupted follicular development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lihua Cui ◽  
Caixia Li ◽  
Ye Shang ◽  
Dihua Li ◽  
Yuzhen Zhuo ◽  
...  

Pancreatic fibrosis is a pathological characteristic of chronic pancreatitis (CP) and pancreatic cancer. Chaihu Guizhi Ganjiang Decoction (CGGD) is a traditional Chinese medicine, which is widely used in the clinical treatment of digestive diseases. However, the potential anti-fibrosis mechanism of CGGD in treating CP remains unclear. Here, we conducted a series of experiments to examine the effect of CGGD on the CP rat model and primary isolated pancreatic stellate cells (PSCs). The results revealed that CGGD attenuated pancreatic damage, decreased collagen deposition, and inhibited PSC activation in the pancreas of CP rats. However, compared with the CP group, CGGD had no effect on body weight and serum amylase and lipase. In addition, CGGD suppressed autophagy by downregulating Atg5, Beclin-1, and LC3B and facilitated phosphorylation of mTOR and JNK in pancreatic tissues and PSCs. Moreover, the CGGD-containing serum also decreased LC3B or collagen I expression after rapamycin (mTOR inhibitor) or SP600125 (JNK inhibitor) treatment in PSCs. In conclusion, CGGD attenuated pancreatic fibrosis and PSC activation, possibly by suppressing autophagy of PSCs through the JNK/mTOR signaling pathway.


The Prostate ◽  
2019 ◽  
Vol 79 (10) ◽  
pp. 1180-1190 ◽  
Author(s):  
Yi Sun ◽  
Jian‐Zhong Ai ◽  
Xi Jin ◽  
Liang‐Ren Liu ◽  
Tian‐Hai Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document