scholarly journals Urotensin-II-Targeted Liposomes as a New Drug Delivery System towards Prostate and Colon Cancer Cells

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Silvia Zappavigna ◽  
Marianna Abate ◽  
Alessia Maria Cossu ◽  
Sara Lusa ◽  
Virginia Campani ◽  
...  

Urotensin-II (UT-II) and its receptor (UTR) are involved in the occurrence of different epithelial cancers. In particular, UTR was found overexpressed on colon, bladder, and prostate cancer cells. The conjugation of ligands, able to specifically bind receptors that are overexpressed on cancer cells, to liposome surface represents an efficient active targeting strategy to enhance selectivity and efficiency of drug delivery systems. The aim of this study was to develop liposomes conjugated with UT-II (LipoUT) for efficient targeting of cancer cells that overexpress UTR. The liposomes had a mean diameter between 150 nm and 160 nm with a narrow size distribution (PI≤0.1) and a doxo encapsulation efficiency of 96%. Moreover, the conjugation of UT-II to liposomes weakly reduced the zeta potential. We evaluated UTR expression on prostate (DU145, PC3, and LNCaP) and colon (WIDR and LoVo) cancer cells by FACS and western blotting analysis. UTR protein was expressed in all the tested cell lines; the level of expression was higher in WIDR, PC3, and LNCaP cells compared with LoVo and DU145. MTT cell viability assay showed that LipoUT-doxo was more active than Lipo-doxo on the growth inhibition of cells that overexpressed UTR (PC3, LNCaP, and WIDR) while in LoVo and DU145 cell lines, the activity was similar to or lower than that one of Lipo-doxo, respectively. Moreover, we found that cell uptake of Bodipy-labeled liposomes in PC3 and DU145 was higher for LipoUT than the not-armed counterparts but at higher extent in UTR overexpressing PC3 cells (about 2-fold higher), as evaluated by both confocal and FACS. In conclusion, the encapsulation of doxo in UT-II-targeted liposomes potentiated its delivery in UTR-overexpressing cells and could represent a new tool for the targeting of prostate and colon cancer.

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1261
Author(s):  
Nurul Fattin Che Rahim ◽  
Yazmin Hussin ◽  
Muhammad Nazirul Mubin Aziz ◽  
Nurul Elyani Mohamad ◽  
Swee Keong Yeap ◽  
...  

Colorectal cancer (CRC) is the third most common type of cancer worldwide and a leading cause of cancer death. According to the Malaysian National Cancer Registry Report 2012–2016, colorectal cancer was the second most common cancer in Malaysia after breast cancer. Recent treatments for colon cancer cases have caused side effects and recurrence in patients. One of the alternative ways to fight cancer is by using natural products. Curcumin is a compound of the rhizomes of Curcuma longa that possesses a broad range of pharmacological activities. Curcumin has been studied for decades but due to its low bioavailability, its usage as a therapeutic agent has been compromised. This has led to the development of a chemically synthesized curcuminoid analogue, (2E,6E)-2,6-bis(2,3-dimethoxybenzylidine) cyclohexanone (DMCH), to overcome the drawbacks. This study aims to examine the potential of DMCH for cytotoxicity, apoptosis induction, and activation of apoptosis-related proteins on the colon cancer cell lines HT29 and SW620. The cytotoxic activity of DMCH was evaluated using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) cell viability assay on both of the cell lines, HT29 and SW620. To determine the mode of cell death, an acridine orange/propidium iodide (AO/PI) assay was conducted, followed by Annexin V/FITC, cell cycle analysis, and JC-1 assay using a flow cytometer. A proteome profiler angiogenesis assay was conducted to determine the protein expression. The inhibitory concentration (IC50) of DMCH in SW620 and HT29 was 7.50 ± 1.19 and 9.80 ± 0.55 µg/mL, respectively. The treated cells displayed morphological features characteristic of apoptosis. The flow cytometry analysis confirmed that DMCH induced apoptosis as shown by an increase in the sub-G0/G1 population and an increase in the early apoptosis and late apoptosis populations compared with untreated cells. A higher number of apoptotic cells were observed on treated SW620 cells as compared to HT29 cells. Human apoptosis proteome profiler analysis revealed upregulation of Bax and Bad proteins and downregulation of Livin proteins in both the HT29 and SW620 cell lines. Collectively, DMCH induced cell death via apoptosis, and the effect was more pronounced on SW620 metastatic colon cancer cells, suggesting its potential effects as an antimetastatic agent targeting colon cancer cells.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 707
Author(s):  
Mohd Shahnawaz Khan ◽  
Alya Alomari ◽  
Shams Tabrez ◽  
Iftekhar Hassan ◽  
Rizwan Wahab ◽  
...  

The continuous loss of human life due to the paucity of effective drugs against different forms of cancer demands a better/noble therapeutic approach. One possible way could be the use of nanostructures-based treatment methods. In the current piece of work, we have synthesized silver nanoparticles (AgNPs) using plant (Heliotropiumbacciferum) extract using AgNO3 as starting materials. The size, shape, and structure of synthesized AgNPs were confirmed by various spectroscopy and microscopic techniques. The average size of biosynthesized AgNPs was found to be in the range of 15 nm. The anticancer potential of these AgNPs was evaluated by a battery of tests such as MTT, scratch, and comet assays in breast (MCF-7) and colorectal (HCT-116) cancer models. The toxicity of AgNPs towards cancer cells was confirmed by the expression pattern of apoptotic (p53, Bax, caspase-3) and antiapoptotic (BCl-2) genes by RT-PCR. The cell viability assay showed an IC50 value of 5.44 and 9.54 µg/mL for AgNPs in MCF-7 and HCT-116 cell lines respectively. We also observed cell migration inhibiting potential of AgNPs in a concentration-dependent manner in MCF-7 cell lines. A tremendous rise (150–250%) in the production of ROS was observed as a result of AgNPs treatment compared with control. Moreover, the RT-PCR results indicated the difference in expression levels of pro/antiapoptotic proteins in both cancer cells. All these results indicate that cell death observed by us is mediated by ROS production, which might have altered the cellular redox status. Collectively, we report the antimetastasis potential of biogenic synthesized AgNPs against breast and colorectal cancers. The biogenic synthesis of AgNPs seems to be a promising anticancer therapy with greater efficacy against the studied cell lines.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4417
Author(s):  
Rabin Neupane ◽  
Saloni Malla ◽  
Mariam Sami Abou-Dahech ◽  
Swapnaa Balaji ◽  
Shikha Kumari ◽  
...  

A novel series of 4-anilinoquinazoline analogues, DW (1–10), were evaluated for anticancer efficacy in human breast cancer (BT-20) and human colorectal cancer (CRC) cell lines (HCT116, HT29, and SW620). The compound, DW-8, had the highest anticancer efficacy and selectivity in the colorectal cancer cell lines, HCT116, HT29, and SW620, with IC50 values of 8.50 ± 2.53 µM, 5.80 ± 0.92 µM, and 6.15 ± 0.37 µM, respectively, compared to the non-cancerous colon cell line, CRL1459, with an IC50 of 14.05 ± 0.37 µM. The selectivity index of DW-8 was >2-fold in colon cancer cells incubated with vehicle. We further determined the mechanisms of cell death induced by DW-8 in SW620 CRC cancer cells. DW-8 (10 and 30 µM) induced apoptosis by (1) producing cell cycle arrest at the G2 phase; (2) activating the intrinsic apoptotic pathway, as indicated by the activation of caspase-9 and the executioner caspases-3 and 7; (3) nuclear fragmentation and (4) increasing the levels of reactive oxygen species (ROS). Overall, our results suggest that DW-8 may represent a suitable lead for developing novel compounds to treat CRC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zeinab Faghfoori ◽  
Mohammad Hasan Faghfoori ◽  
Amir Saber ◽  
Azimeh Izadi ◽  
Ahmad Yari Khosroushahi

Abstract Background Colorectal cancer (CRC), with a growing incidence trend worldwide, is resistant to apoptosis and has uncontrolled proliferation. It is recently reported that probiotic microorganisms exert anticancer effects. The genus Bifidobacterium, one of the dominant bacterial populations in the gastrointestinal tract, has received increasing attention because of widespread interest in using it as health-promoting microorganisms. Therefore, the present study aimed to assess the apoptotic effects of some bifidobacteria species on colon cancer cell lines. Methods The cytotoxicity evaluations performed using MTT assay and FACS-flow cytometry tests. Also, the effects of five species of bifidobacteria secretion metabolites on the expression level of anti- or pro-apoptotic genes including BAD, Bcl-2, Caspase-3, Caspase-8, Caspase-9, and Fas-R studied by real-time polymerase chain reaction (RT-PCR) method. Results The cell-free supernatant of all studied bifidobacteria significantly decreased the survival rates of colon cancer cells compared with control groups. Flow cytometric and RT-PCR results indicated that apoptosis is induced by bifidobacteria secretion metabolites and the mechanism for the action of bifidobacteria species in CRC prevention could be down-regulation and up-regulation of anti-apoptotic and, pro-apoptotic genes. Conclusions In the present study, different bifidobacteria species showed anticancer activity on colorectal cancer cells through down-regulation and up-regulation of anti-apoptotic and pro-apoptotic genes. However, further studies are required to clarify the exact mechanism of apoptosis induction by bifidobacteria species.


1991 ◽  
Vol 276 (3) ◽  
pp. 599-605 ◽  
Author(s):  
S Yonezawa ◽  
J C Byrd ◽  
R Dahiya ◽  
J J L Ho ◽  
J R Gum ◽  
...  

The purpose of this study was to determine the quantity and nature of the mucins synthesized and secreted by four different pancreatic cancer cell lines. Well- to moderately-differentiated SW1990 and CAPAN-2 human pancreatic cancer cells were found to produce more high-Mr glycoprotein (HMG) than less-differentiated MIA PaCa-2 and PANC-1 cells. Most of the labelled HMG was secreted within 24 h. The results of chemical and enzymic degradation, ion-exchange chromatography and density-gradient centrifugation indicated that the HMG in SW1990 and CAPAN-2 cells has the properties expected for mucins, whereas much of the HMG in MIA PaCa-2 and PANC-1 cells may not be mucin, but proteoglycan. These results are consistent with immunoblots and Northern blots showing the presence of apomucin and apomucin mRNA in SW1990 and CAPAN-2 cells, but not in MIA PaCa-2 and PANC-1 cells. The Western blots and Northern blots also show that SW1990 and CAPAN-2 cells, like breast cancer cells, have the mammary-type apomucin and mRNA coded by the MUC1 gene, but lack the intestinal type apomucin and mRNA coded by the MUC2 gene. In contrast, the colon cancer cell lines tested in culture express apomucin and mRNA coded by MUC2 but not by MUC1.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2750 ◽  
Author(s):  
Jitendra Shrestha ◽  
Sung Ki ◽  
Sang Shin ◽  
Seon Kim ◽  
Joo-Youn Lee ◽  
...  

FTY720 inhibits various cancers through PP2A activation. The structure of FTY720 is also used as a basic structure for the design of sphingosine kinase (SK) inhibitors. We have synthesized derivatives using an amide chain in FTY720 with a phenyl backbone, and then compounds were screened by an MTT cell viability assay. The PP2A activity of compound 7 was examined. The phosphorylation levels of AKT and ERK, downstream targets of PP2A, in the presence of compound 7, were determined. Compound 7 may exhibit anticancer effects through PP2A activation rather than the mechanism by inhibition of SK1 in cancer cells. In the docking study of compound 7 and PP2A, the amide chain of compound 7 showed an interaction with Asn61 that was different from FTY720, which is expected to affect the activity of the compound.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A767-A767
Author(s):  
Nassiba Taib ◽  
Maysaloun Merhi ◽  
Varghese Inchakalody ◽  
Sarra Mestiri ◽  
Afsheen Raza ◽  
...  

BackgroundColorectal cancer (CRC) is a leading cause of cancer related deaths. Epigenetic silencing of numerous tumor suppressor genes by promoter region hypermethylation has been found in a variety of cancers including CRC. The chemotherapeutic drug decitabine (DAC) is a strong inducer of DNA demethylation. Primary cancer cells are known to express stemness markers as an escape pathway of treatment. Moreover, immunoregulatory genes can be inactivated in these cells by methylation of promoter CpG islands. Both mechanisms are known to play crucial roles in tumor progression. In this study, we investigated the effect of DAC on the expression of stemness markers, Programmed cell death ligand (PD-L1) and New York esophageal squamous cell carcinoma 1 (NY-ESO-1) in a metastatic (1872 Col) and a primary (1076 Col) colorectal cancer cell lines isolated from patients' tumor tissues.MethodsThe 1076 Col and 1872 Col cell lines were treated with 5 μM of DAC for 48 hours. Differential expression of a panel of stemness and immunoregulatory markers before and after treatment was analyzed by Flow cytometry (FACS), Western Blotting (WB) and quantitative real time PCR (qRT-PCR).ResultsThe following stemness markers: CD44, Nanog, KLF-4, CD133 and MSI1 were up-regulated in both 1076 Col and 1872 Col cell lines after treatment. However, significant up-regulation of the immunoinhibitory PD-L1 marker was recorded after treatment only in the metastatic 1872 Col. Interestingly, the NY-ESO-1 tumor antigen was significantly upregulated in both 1076 Col and 1872 Col cell lines after treatment.ConclusionsTreatment of colon cancer cells with DAC induces chemotherapeutic resistance as evidenced by the induction/upregulation of the stemness markers; and immune escape mechanism through the induction/upregulation of PD-L1. However, such treatment resulted in the induction/expression of the most immunogenic NY-ESO-1 tumor antigen. Our data suggest the importance use of a combined treatment strategy utilizing chemotherapy (DAC) with anti-PD-L-1/PD-1treatment in colon cancer patients.Ethics ApprovalThe study obtained ethical approval from Hamad Medical Corporation, Medical Research Center Ethic Board: Grant ID : IRGC-04-SI-17-142.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Manuel Valenzuela ◽  
Lorena Bastias ◽  
Iván Montenegro ◽  
Enrique Werner ◽  
Alejandro Madrid ◽  
...  

Antioxidants are known to be beneficial to health. This paper evaluates the potential chemopreventive and anticancer properties of phenolic compounds present in grape juice extracts (GJE) from Autumn Royal and Ribier varieties. The effects of these GJE on viability (SRB day assay) and metastatic potential (migration and invasion parameters) of colon cancer cell lines HT-29 and SW-480 were evaluated. The effects of GJE on two matrix metalloproteinase gene expressions (MMP2 and MMP9) were also evaluated via qRT-PCR. In the former, GJE reduced cell viability in both cell lines in a dose-dependent manner. GJE treatment also reduced cell migration and invasion. Moreover, MMP-2 and MMP-9 gene expression diminished depending on extract and on cell type.Conclusions. These results provide novel information concerning anticancer properties of selected GJE by revealing selective cytotoxicity and the ability to reduce invasiveness of colon cancer cells.


Sign in / Sign up

Export Citation Format

Share Document