scholarly journals Chaihu-Shugan-San Reinforces CYP3A4 Expression via Pregnane X Receptor in Depressive Treatment of Liver-Qi Stagnation Syndrome

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Zehui He ◽  
Rong Fan ◽  
Chunhu Zhang ◽  
Tao Tang ◽  
Xu Liu ◽  
...  

Backgrounds. Chaihu-Shugan-San (CSS) is a classic traditional Chinese herbal prescription for treating depression. However, the underlying mechanism of the Chinese syndrome-specific efficacy of CSS is poorly understood. Aim of the Study. From traditional Chinese medicine and pharmacogenetics perspectives, the present study aimed to investigate the antidepressant effects of CSS on a mouse model of Liver-Qi Stagnation (LQS) syndrome and its underlying mechanisms. Methods and Materials. We used two main mouse models of depressive syndromes in the study, including LQS and liver stagnation and spleen deficiency (LSSD) syndrome. Tail suspension and forced swimming tests were used to evaluate the effects of CSS on animal behaviour. The expression level of the CYP450 enzyme from liver microsomes was analysed by western blot (WB) analysis and quantitative real-time polymerase chain reaction (qRT-PCR). More specifically, we analysed the key compounds of CSS that are responsible for CYP450 regulation via bioinformatics. Ultimately, luciferase assays were employed to confirm the prediction in vitro. Results. CSS remarkably reduced the immobile time in LQS rather than in LSSD mice. Although CSS significantly upregulated CYP2C9 in mice with both syndromes, activated translation of CYP3A4 induced by CSS was only observed in the LQS group. Bioinformatics analysis revealed that the unique regulation of CYP3A4 was responsible for the effects of glycyrrhetinic acid (GA) from CSS. Further luciferase assays confirmed the enhancement of CYP3A4 expression via the pregnane X receptor (PXR) pathway in vitro. Conclusions. CSS specifically upregulates the translation of CYP3A4 via the PXR pathway in depressed LQS mice. GA, a bioactive compound that originates from CSS, contributes to this activation. This work provides novel insight into Chinese syndrome-based therapy for depression.

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Tichapa Sirikarin ◽  
Titchaporn Palo ◽  
Sirikul Chotewuttakorn ◽  
Weerawadee Chandranipapongse ◽  
Suveerawan Limsuvan ◽  
...  

Background. Andrographis paniculata(AP) has been used in Thai traditional medicine to treat various infections, including the common cold and fever. Its bioactive compound, andrographolide, has shown antiplatelet activities in anin vitrostudy model. Since clinical studies of the effects of AP on the human platelet function have never been reported, we investigated its effect on platelet activity in ten healthy volunteers.Methods. Two grams of AP was taken 3 times within one day. The blood was withdrawn by venipuncture before and 2 and 24 hours after the AP administration to analyze the effects of AP on platelet aggregation, the expression of enzyme cyclooxygenase (COX) mRNA and protein, and TXB2, including P-selectin.Result. Even though there was no significant change in the studied parameters, this study exhibited patient-to-patient variability in platelet function. It was found that ADP-induced platelet aggregation tended to decrease after AP administration, while epinephrine-induced platelet aggregation in females tended to be higher than that in males for the entire study period. Moreover, COX-1 mRNA levels tended to decrease while P-selectin levels tended to rise after AP administration.Conclusion. These controversial results are possibly due to the multifactorial mechanisms of platelet aggregation as well as the multichemical composition of AP. Further study, probably at the molecular level, is needed to unveil the underlying mechanisms of action of AP.


Author(s):  
Tianrong Xun ◽  
Zhufen Lin ◽  
Xiaokang Wang ◽  
Xia Zhan ◽  
Haixing Feng ◽  
...  

AbstractUremic toxin accumulation is one possible reason for alterations in hepatic drug metabolism in patients with chronic kidney disease (CKD). However, the types of uremic toxins and underlying mechanisms are poorly understood. In this study, we report the role of advanced oxidation protein products (AOPPs), a modified protein uremic toxin, in the downregulation of cytochromes P450 1A2 (CYP1A2) and P450 3A4 (CYP3A4) expression levels and activities. We found that AOPP accumulation in plasma in a rat CKD model was associated with decreased protein levels of CYP1A2 and CYP3A4. CYP1A2 and CYP3A4 metabolites (acetaminophen and 6β-hydroxytestosterone, respectively,) in liver microsomes were also significantly decreased. In human hepatocytes, AOPPs significantly decreased CYP1A2 and CYP3A4 protein levels in a dose- and time-dependent manner and downregulated their activities; however, bovine serum albumin (BSA), a synthetic precursor of AOPPs, had no effect on these parameters. The effect of AOPPs was associated with upregulation of p-IKKα/β, p-IκBα, p-NF-κB, and inflammatory cytokines protein levels and increases in p-IKKα/β/IKKα, p-IκBα/IκBα, and p-NF-κB/NF-κB phosphorylation ratios. Further, NF-kB pathway inhibitors BAY-117082 and PDTC abolished the downregulatory effects of AOPPs. These findings suggest that AOPPs downregulate CYP1A2 and CYP3A4 expression and activities by increasing inflammatory cytokine production and stimulating NF-κB-mediated signaling. Protein uremic toxins, such as AOPPs, may modify the nonrenal clearance of drugs in patients with CKD by influencing metabolic enzymes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ruijuan Qi ◽  
Yuan Kang ◽  
Ximeng Li ◽  
Xiaoyu Zhang ◽  
Yixin Han ◽  
...  

Mast cells (MCs) activated via IgE/FcεRI or MAS-related G protein coupled receptor (Mrgpr)-mediated pathway can release granules that play prominent roles in hypersensitivity reactions. Forsythiae Fructus, a well-known traditional Chinese medicine, has been clinically used for allergic diseases. Although previous studies indicated that Forsythiae Fructus extract inhibited compound 48/80-induced histamine release from MCs, its effect on IgE-dependent MC degranulation and possible underlying mechanisms remain to be explored. Herein, we prepared the forsythiasides-rich extract (FRE) and investigated its action on MC degranulation and explored its underlying mechanism. Our data showed that FRE could dampen IgE/FcεRI- and Mrgpr-mediated MC degranulation in vitro and in vivo. Mechanism study indicated that FRE decreased cytosolic Ca2+ (Ca2+[c]) level rapidly and reversibly. Moreover, FRE decreased Ca2+[c] of MCs independent of plasma membrane Ca2+-ATPase (PMCA), sarco/endoplasmic Ca2+-ATPase (SERCA) and Na+/Ca2+ exchanger (NCX). While, along with Ca2+[c] decrease, the increase of mitochondrial Ca2+ (Ca2+[m]) occurred simultaneously in FRE-treated RBL-2H3 cells. In the isolated mitochondria, FRE also promoted the subcellular organelle to uptake more extramitochondrial Ca2+. In conclusion, by increasing Ca2+[m] uptake, FRE decreases Ca2+[c] level to suppress MC degranulation. Our findings may provide theoretical support for the clinical application of Forsythiae Fructus on allergy and other MC-involved diseases.


2020 ◽  
Vol 127 (5) ◽  
pp. 651-663 ◽  
Author(s):  
Xiaopeng Tang ◽  
Mingqian Fang ◽  
Ruomei Cheng ◽  
Zhiye Zhang ◽  
Yuming Wang ◽  
...  

Rationale: Epidemiological studies have identified an associate between iron deficiency (ID) and the use of oral contraceptives (CC) and ischemic stroke (IS). To date, however, the underlying mechanism remains poorly understood. Both ID and CC have been demonstrated to upregulate the level and iron-binding ability of Tf (transferrin), with our recent study showing that this upregulation can induce hypercoagulability by potentiating FXIIa/thrombin and blocking antithrombin-coagulation proteases interactions. Objective: To investigate whether Tf mediates IS associated with ID or CC and the underlying mechanisms. Methods and Results: Tf levels were assayed in the plasma of IS patients with a history of ID anemia, ID anemia patients, venous thromboembolism patients using CC, and ID mice, and in the cerebrospinal fluid of some IS patients. Effects of ID and estrogen administration on Tf expression and coagulability and the underlying mechanisms were studied in vivo and in vitro. High levels of Tf and Tf-thrombin/FXIIa complexes were found in patients and ID mice. Both ID and estrogen upregulated Tf through hypoxia and estrogen response elements located in the Tf gene enhancer and promoter regions, respectively. In addition, ID, administration of exogenous Tf or estrogen, and Tf overexpression promoted platelet-based thrombin generation and hypercoagulability and thus aggravated IS. In contrast, anti-Tf antibodies, Tf knockdown, and peptide inhibitors of Tf-thrombin/FXIIa interaction exerted anti-IS effects in vivo. Conclusions: Our findings revealed that certain factors (ie, ID and CC) upregulating Tf are risk factors of thromboembolic diseases decipher a previously unrecognized mechanistic association among ID, CC, and IS and provide a novel strategy for the development of anti-IS medicine by interfering with Tf-thrombin/FXIIa interactions.


2020 ◽  
Vol 21 (15) ◽  
pp. 5465
Author(s):  
Jin-Seok Lee ◽  
Yoo-Jin Jeon ◽  
Ji-Yun Kang ◽  
Sam-Keun Lee ◽  
Hwa-Dong Lee ◽  
...  

Microglial hyperactivation and neuroinflammation are known to induce neuronal death, which is one of the main causes of neurodegenerative disorders. We previously found that Aquilariae Lignum extract attenuated both neuronal excitotoxicity and neuroinflammation in vivo and in vitro. For further analysis, we extracted the methylene chloride fraction of Aquilariae Lignum to determine the bioactive compounds. In this study, we investigated the anti-neuroinflammatory effects and underlying mechanisms of the Aquilariae Lignum fraction (ALF) using lipopolysaccharide (LPS)-stimulated BV2 microglial cells. BV2 cells were pretreated with ALF (0.5, 1, and 2.5 μg/mL) before treatment with LPS (1 μg/mL). Pretreatment with ALF significantly attenuated the LPS-induced overproductions of nitric oxide (NO), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and interleukin (IL)-1β. These anti-inflammatory effects were supported by ALF-mediated modulation of the nuclear factor-kappa B (NF-κB) pathway. Furthermore, ALF exerted strong anti-inflammasome effects, as shown by IL-1β-specific inhibitory activity, but not activity against tumor necrosis factor (TNF)-α, along with inhibition of caspase-1 activity and NACHT, LRR, and PYD domain-containing protein 3 (NLRP3)-related molecules. These results indicate the potent anti-neuroinflammatory activity of ALF and that its underlying mechanism may involve the regulation of NLRP3 inflammasome-derived neuroinflammation in microglial cells.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4976
Author(s):  
Shalini Vellasamy ◽  
Dharmani Murugan ◽  
Razif Abas ◽  
Aspalilah Alias ◽  
Wu Yuan Seng ◽  
...  

Paeonol is a naturally existing bioactive compound found in the root bark of Paeonia suffruticosa and it is traditionally used in Chinese medicine for the prevention and management of cardiovascular diseases. To date, a great deal of studies has been reported on the pharmacological effects of paeonol and its mechanisms of action in various diseases and conditions. In this review, the underlying mechanism of action of paeonol in cardiovascular disease has been elucidated. Recent studies have revealed that paeonol treatment improved endothelium injury, demoted inflammation, ameliorated oxidative stress, suppressed vascular smooth muscle cell proliferation, and repressed platelet activation. Paeonol has been reported to effectively protect the cardiovascular system either employed alone or in combination with other traditional medicines, thus, signifying it could be a hypothetically alternative or complementary atherosclerosis treatment. This review summarizes the biological and pharmacological activities of paeonol in the treatment of cardiovascular diseases and its associated underlying mechanisms for a better insight for future clinical practices.


2021 ◽  
Author(s):  
Yuhan Gao ◽  
Haiqiang Jin ◽  
Hui Tan ◽  
Ruiqin Hou ◽  
Wenqin Tian ◽  
...  

Abstract Transfusion of aged erythrocytes is associated with increased morbidity and mortality in the critically infections with incompletely understood mechanism. Previous studies suggested red blood cell (RBC)-derived extracellular vesicles (EVs) may be potential risk factors for the occurrence of transfusion-related immunomodulation (TRIM). The purpose of our study is to evaluate the effects of EVs under the inflammation condition and explore the underlying mechanisms. In vivo, the activity of EVs was evaluated in the caecal ligation and puncture (CLP)-induced sepsis. Our results showed EVs significantly aggravated the inflammatory response of sepsis in serum and lung tissue by promoting the production of pro-inflammatory factors, TNF-α, IL-6, IL-1β, and reduced the survival rate of septic mice in vivo. Importantly, adoptive transfer EVs pretreated bone marrow-derived macrophages (BMDM) obviously aggravated the systemic pro-inflammatory factors in mice after CLP surgery. In vitro, the pro-inflammatory properties of EVs were shown as elevating the levels of TNF-α, IL-6, IL-1βin LPS-stimulated BMDM. Moreover, EVs promoted the LPS-induced macrophages polarization into pro-inflammatory phenotype. The underlying mechanism was possibly that EVs could up-regulate NF-κB and MAPKs activity to favor macrophage cytokines production.


2021 ◽  
Author(s):  
Kiyomi Nakagawa ◽  
Saiful Islam ◽  
Masashi Ueda ◽  
Toshiyuki Nakagawa

Abstract Adult hippocampal neurogenesis (AHN) plays an important role in hippocampus-dependent function. The number of doublecortin (Dcx)-positive immature neurons in the dentate gyrus (DG) decreases during aging and especially in the early stages of Alzheimer’s disease (AD) and is further reduced in later stages of AD. Obesity in midlife is associated with dementia later in life; however, the underlying mechanisms by which obesity results in the development of dementia later in life remain unknown. Here, we show that endoplasmic reticulum (ER) stress was activated in the hippocampus, and processes of Dcx-expressing immature neurons were shortened, coexpressing CHOP in APP23 AD model mice with high-fat diet (HFD)-induced long-term obesity as well as aged Leprdb/db (db/db) mice. Moreover, in differentiating cells from hippocampal neurospheres, Dcx mRNA was rapidly degraded via a microRNA (miRNA) pathway after thapsigargin treatment in vitro. These results indicate that loss of Dcx mRNA induced by ER stress during AHN may be an underlying mechanism of memory impairment in obese individuals later in life.


Author(s):  
Wei Chen ◽  
Linlin Ji ◽  
Zairong Wei ◽  
Chenglan Yang ◽  
Shusen Chang ◽  
...  

AbstractHuman amniotic mesenchymal stem cells (hAMSCs) can be differentiated into Schwann-cell-like cells (SCLCs) in vitro. However, the underlying mechanism of cell differentiation remains unclear. In this study, we explored the phenotype and multipotency of hAMSCs, which were differentiated into SCLCs, and the expression of nerve repair-related Schwann markers, such as S100 calcium binding protein B (S-100), TNF receptor superfamily member 1B (P75), and glial fibrillary acidic protein (GFAP) were observed to be significantly increased. The secreted functional neurotrophic factors, like brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3), were determined and also increased with the differentiation time. Moreover, miR-146a-3p, which significantly decreased during the differentiation of hAMSCs into SCLCs, was selected by miRNA-sequence analysis. Further molecular mechanism studies showed that Erb-B2 receptor tyrosine kinase 2 (ERBB2) was an effective target of miR-146a-3p and that miR-146a-3p down-regulated ERBB2 expression by binding to the 3′-UTR of ERBB2. The expression of miR-146a-3p markedly decreased, while the mRNA levels of ERBB2 increased with the differentiation time. The results showed that down-regulating miR-146a-3p could promote SC lineage differentiation and suggested that miR-146a-3p negatively regulated the Schwann-like phenotype differentiation of hAMSCs by targeting ERBB2. The results will be helpful to establish a deeper understanding of the underlying mechanisms and find novel strategies for cell therapy.


Planta Medica ◽  
2017 ◽  
Vol 84 (05) ◽  
pp. 320-328 ◽  
Author(s):  
Anam Fayyaz ◽  
Seddy Makwinja ◽  
Seppo Auriola ◽  
Hannu Raunio ◽  
Risto Juvonen

AbstractScoparone is a natural bioactive compound in Chinese herbal medicines. It has numerous pharmacological actions, including liver protective, hypolipidemic, antitumor, and anti-inflammatory effects. The primary metabolism route of scoparone is O-demethylation to scopoletin or isoscopoletin catalyzed by CYP enzymes. The aims of our study were to identify the human CYP enzymes catalyzing scoparone 7-O-demethylation to scopoletin and to compare this oxidation reaction in liver microsomes among different species. A high throughput fluorescent-based assay method was developed to determine the scoparone 7-O-demethylation to scopoletin rate. The rate was 100 – 400 nmol/(min×g protein) in mouse and rabbit liver microsomes, 10 – 20 nmol/(min×g protein) in pig microsomes, 1 – 3 nmol/(min×g protein) in human and less than 1 nmol/(min×g protein) in rat liver microsomes. Human CYP1A1 (Km 13 µM and Vmax 0.8 min−1), CYP1A2 (Km 48 µM and Vmax 0.3 min−1), and CYP2A13 (Km 10 µM and Vmax 22 min−1) were the most efficient catalysts of the reaction. The CYP2A6 selective inhibitor pilocarpine and an antibody against mouse CYP2A5 inhibited scoparone 7-O-demethylation to scopoletin in rabbit, mouse, and pig liver microsomes, indicating involvement of CYP2A enzymes in the reaction. Hepatic scoparone 7-O-demethylation to scopoletin differed between species both with respect to the rate of reaction and catalyzing enzymes. These species differences need to be taken into account when testing scoparone pharmacokinetics in animals and humans.


Sign in / Sign up

Export Citation Format

Share Document