scholarly journals Biological Activities of Paeonol in Cardiovascular Diseases: A Review

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4976
Author(s):  
Shalini Vellasamy ◽  
Dharmani Murugan ◽  
Razif Abas ◽  
Aspalilah Alias ◽  
Wu Yuan Seng ◽  
...  

Paeonol is a naturally existing bioactive compound found in the root bark of Paeonia suffruticosa and it is traditionally used in Chinese medicine for the prevention and management of cardiovascular diseases. To date, a great deal of studies has been reported on the pharmacological effects of paeonol and its mechanisms of action in various diseases and conditions. In this review, the underlying mechanism of action of paeonol in cardiovascular disease has been elucidated. Recent studies have revealed that paeonol treatment improved endothelium injury, demoted inflammation, ameliorated oxidative stress, suppressed vascular smooth muscle cell proliferation, and repressed platelet activation. Paeonol has been reported to effectively protect the cardiovascular system either employed alone or in combination with other traditional medicines, thus, signifying it could be a hypothetically alternative or complementary atherosclerosis treatment. This review summarizes the biological and pharmacological activities of paeonol in the treatment of cardiovascular diseases and its associated underlying mechanisms for a better insight for future clinical practices.

2003 ◽  
Vol 1 (2) ◽  
pp. 65-76 ◽  
Author(s):  
UDHI EKO HERNAWAN ◽  
AHMAD DWI SETYAWAN

Garlic has been used a long time ago as traditional medicines. The valuable bulb is used to treat hypertension, respiratory infection, headache, hemorrhoids, constipation, bruised injury or slice, insomnia, cholesterol, influenza, urinary infection, etc. Garlic bulbs can be used as anti-diabetic, anti-hypertension, anti-cholesterol, anti-atheroschlerosis, anti-oxidant, anti-cell platelet aggregation, fibrinolyse spur, anti-viral, anti-microbial, and anti-cancer. The ultimate bioactive compound of garlic is organo-sulphure components, i.e. alliin, allicin, ajoene, allyl sulphide groups, and allyl cystein. There was not any report of any side effects or toxicity of garlic.


Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 634
Author(s):  
Han Xiao ◽  
Jiarui Zhao ◽  
Chang Fang ◽  
Qi Cao ◽  
Maochen Xing ◽  
...  

Fucoxanthin is a natural carotenoid derived mostly from many species of marine brown algae. It is characterized by small molecular weight, is chemically active, can be easily oxidized, and has diverse biological activities, thus protecting cell components from ROS. Fucoxanthin inhibits the proliferation of a variety of cancer cells, promotes weight loss, acts as an antioxidant and anti-inflammatory agent, interacts with the intestinal flora to protect intestinal health, prevents organ fibrosis, and exerts a multitude of other beneficial effects. Thus, fucoxanthin has a wide range of applications and broad prospects. This review focuses primarily on the latest progress in research on its pharmacological activity and underlying mechanisms.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Zehui He ◽  
Rong Fan ◽  
Chunhu Zhang ◽  
Tao Tang ◽  
Xu Liu ◽  
...  

Backgrounds. Chaihu-Shugan-San (CSS) is a classic traditional Chinese herbal prescription for treating depression. However, the underlying mechanism of the Chinese syndrome-specific efficacy of CSS is poorly understood. Aim of the Study. From traditional Chinese medicine and pharmacogenetics perspectives, the present study aimed to investigate the antidepressant effects of CSS on a mouse model of Liver-Qi Stagnation (LQS) syndrome and its underlying mechanisms. Methods and Materials. We used two main mouse models of depressive syndromes in the study, including LQS and liver stagnation and spleen deficiency (LSSD) syndrome. Tail suspension and forced swimming tests were used to evaluate the effects of CSS on animal behaviour. The expression level of the CYP450 enzyme from liver microsomes was analysed by western blot (WB) analysis and quantitative real-time polymerase chain reaction (qRT-PCR). More specifically, we analysed the key compounds of CSS that are responsible for CYP450 regulation via bioinformatics. Ultimately, luciferase assays were employed to confirm the prediction in vitro. Results. CSS remarkably reduced the immobile time in LQS rather than in LSSD mice. Although CSS significantly upregulated CYP2C9 in mice with both syndromes, activated translation of CYP3A4 induced by CSS was only observed in the LQS group. Bioinformatics analysis revealed that the unique regulation of CYP3A4 was responsible for the effects of glycyrrhetinic acid (GA) from CSS. Further luciferase assays confirmed the enhancement of CYP3A4 expression via the pregnane X receptor (PXR) pathway in vitro. Conclusions. CSS specifically upregulates the translation of CYP3A4 via the PXR pathway in depressed LQS mice. GA, a bioactive compound that originates from CSS, contributes to this activation. This work provides novel insight into Chinese syndrome-based therapy for depression.


2020 ◽  
Vol 8 ◽  
Author(s):  
Xueyi Wang ◽  
Shangying Ma ◽  
Feifan Lai ◽  
Yiqi Wang ◽  
Chenghua Lou

Eupatorium lindleyanum DC. (EL) has a long history of traditional use in China to cure coughs, chronic bronchitis, lobar pneumonia, and hypertension. Because of this extensive use of EL in traditional medicine, this present review gives a systematic overview of the conventional applications, phytochemistry, and pharmacological effects of the herb. Literature was systematically searched using the scientific databases ScienceDirect, SciFinder, CNKI, Wiley, Baidu Scholar, SpringerLink, PubMed, Web of Science, and other professional websites. Information was also gathered from books on traditional Chinese herbal medicine, the Chinese Pharmacopoeia and Chinese Materia Medica. To date, many preparations of EL have been widely used clinically to treat various diseases of the respiratory system. More than 100 compounds have been isolated from the herb, including triterpenes, sesquiterpenes, sesquiterpene lactones, flavonoids, acyclic diterpenoids, sterols, and so on. Among them, terpenoids are considered to be the most important bioactive substances in EL. The pharmacological functions of EL, including anti-asthmatic, anti-tussive, anti-inflammatory, anti-hyperlipidemic, anti-hypertensive, anti-virus, and anti-tumor activities, have been widely investigated. However, most of the studies are preclinical research. Further studies are required to examine the underlying mechanisms of action. Traditionally, EL is used for treating many diseases, especially respiratory diseases. Unfortunately, up to now, modern studies have not yet well elucidated the conventional usage of EL. Most importantly, its biological activities and the corresponding constituents are still unclear. Moreover, studies on the pharmacokinetics and toxicity of EL are few, so data on the clinical safety of EL are lacking. Taken together, research work on EL is quite preliminary. More in-depth studies of phytochemistry, pharmacological activities, pharmacokinetics, and toxicity of the herb are needed. This review aims to provide valuable information on EL to guide future investigations and applications.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 872 ◽  
Author(s):  
Gaber El-Saber Batiha ◽  
Amany Magdy Beshbishy ◽  
Lamiaa G. Wasef ◽  
Yaser H. A. Elewa ◽  
Ahmed A. Al-Sagan ◽  
...  

Medicinal plants have been used from ancient times for human healthcare as in the form of traditional medicines, spices, and other food components. Garlic (Allium sativum L.) is an aromatic herbaceous plant that is consumed worldwide as food and traditional remedy for various diseases. It has been reported to possess several biological properties including anticarcinogenic, antioxidant, antidiabetic, renoprotective, anti-atherosclerotic, antibacterial, antifungal, and antihypertensive activities in traditional medicines. A. sativum is rich in several sulfur-containing phytoconstituents such as alliin, allicin, ajoenes, vinyldithiins, and flavonoids such as quercetin. Extracts and isolated compounds of A. sativum have been evaluated for various biological activities including antibacterial, antiviral, antifungal, antiprotozoal, antioxidant, anti-inflammatory, and anticancer activities among others. This review examines the phytochemical composition, pharmacokinetics, and pharmacological activities of A. sativum extracts as well as its main active constituent, allicin.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuyang Zhou ◽  
Zhihao Liu ◽  
Zihan Liu ◽  
Huixin Zhou ◽  
Xiao Xu ◽  
...  

Background: The ventromedial hypothalamus (VMH) is an important nuclei in responding to emotional stress, and emotional stress is a risk factor for cardiovascular diseases. However, the role of the VMH in cardiovascular diseases remains unknown. This study aimed to investigate the effects and underlying mechanisms of VMH activation on hypertension related cardiac remodeling in two-kidney-one-clip (2K1C) hypertension (HTN) rats.Methods: Eighteen male Sprague-Dawley rats were injected with AAV-hSyn-hM3D(Gq) into the VMH at 0 weeks and then randomly divided into three groups: (1) sham group (sham 2K1C + saline i.p. injection); (2) HTN group (2K1C + saline i.p. injection); (3) HTN+VMH activation group (2K1C + clozapine-N-oxide i.p. injection). One week later, rats were subjected to a sham or 2K1C operation, and 2 weeks later rats were injected with clozapine-N-oxide or saline for 2 weeks.Results: In the HTN+VMH activation group, FosB expression was significantly increased in VMH sections compared with those of the other two groups. Compared to the HTN group, the HTN+VMH activation group showed significant: (1) increases in systolic blood pressure (SBP); (2) exacerbation of cardiac remodeling; and (3) increases in serum norepinephrine levels and sympathetic indices of heart rate variability. Additionally, myocardial RNA-sequencing analysis showed that VMH activation might regulate the HIF-1 and PPAR signal pathway and fatty acid metabolism. qPCR results confirmed that the relative mRNA expression of HIF-1α was increased and the PPARα and CPT-1 mRNA expression were decreased in the HTN+VMH activation group compared to the HTN group.Conclusions: VMH activation could increase SBP and aggravate cardiac remodeling possibly by sympathetic nerve activation and the HIF-1α/PPARα/CPT-1 signaling pathway might be the underlying mechanism.


Medicines ◽  
2020 ◽  
Vol 7 (10) ◽  
pp. 63
Author(s):  
Ekaterina-Michaela Tomou ◽  
Christina Barda ◽  
Helen Skaltsa

Background: The genus Stachys L. (Lamiaceae) includes about 300 species as annual or perennial herbs or small shrubs, spread in temperate regions of Mediterranean, Asia, America and southern Africa. Several species of this genus are extensively used in various traditional medicines. They are consumed as herbal preparations for the treatment of stress, skin inflammations, gastrointestinal disorders, asthma and genital tumors. Previous studies have investigated the chemical constituents and the biological activities of these species. Thus, the present review compiles literature data on ethnomedicine, phytochemistry, pharmacological activities, clinical studies and the toxicity of genus Stachys. Methods: Comprehensive research of previously published literature was performed for studies on the traditional uses, bioactive compounds and pharmacological properties of the genus Stachys, using databases with different key search words. Results: This survey documented 60 Stachys species and 10 subspecies for their phytochemical profiles, including 254 chemical compounds and reported 19 species and 4 subspecies for their pharmacological properties. Furthermore, 25 species and 6 subspecies were found for their traditional uses. Conclusions: The present review highlights that Stachys spp. consist an important source of bioactive phytochemicals and exemplifies the uncharted territory of this genus for new research studies.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (01) ◽  
pp. 31-37
Author(s):  
Bryan McCulloch ◽  
John Roper ◽  
Kaitlin Rosen

Barrier coatings are used in applications including food packaging, dry goods, and consumer products to prevent transport of different compounds either through or into paper and paperboard substrates. These coatings are useful in packaging to contain active ingredients, such as fragrances, or to protect contents from detrimental substances, such as oxygen, water, grease, or other chemicals of concern. They also are used to prevent visual changes or mechanical degradation that might occur if the paper becomes saturated. The performance and underlying mechanism depends on the barrier coating type and, in particular, on whether the barrier coating is designed to prevent diffusive or capillary transport. Estimates on the basis of fundamental transport phenomena and data from a broad screening of different barrier materials can be used to understand the limits of various approaches to construct barrier coatings. These estimates also can be used to create basic design rules for general classes of barrier coatings.


2020 ◽  
Vol 27 (12) ◽  
pp. 1955-1996 ◽  
Author(s):  
Antonio Speciale ◽  
Antonella Saija ◽  
Romina Bashllari ◽  
Maria Sofia Molonia ◽  
Claudia Muscarà ◽  
...  

: Chronic Noncommunicable Diseases (NCDs), mostly represented by cardiovascular diseases, diabetes, chronic pulmonary diseases, cancers, and several chronic pathologies, are one of the main causes of morbidity and mortality, and are mainly related to the occurrence of metabolic risk factors. Anthocyanins (ACNs) possess a wide spectrum of biological activities, such as anti-inflammatory, antioxidant, cardioprotective and chemopreventive properties, which are able to promote human health. Although ACNs present an apparent low bioavailability, their metabolites may play an important role in the in vivo protective effects observed. : This article directly addresses the scientific evidences supporting that ACNs could be useful to protect human population against several NCDs not only acting as antioxidant but through their capability to modulate cell redox-dependent signaling. In particular, ACNs interact with the NF-κB and AP-1 signal transduction pathways, which respond to oxidative signals and mediate a proinflammatory effect, and the Nrf2/ARE pathway and its regulated cytoprotective proteins (GST, NQO, HO-1, etc.), involved in both cellular antioxidant defenses and elimination/inactivation of toxic compounds, so countering the alterations caused by conditions of chemical/oxidative stress. In addition, supposed crosstalks could contribute to explain the protective effects of ACNs in different pathological conditions characterized by an altered balance among these pathways. Thus, this review underlines the importance of specific nutritional molecules for human health and focuses on the molecular targets and the underlying mechanisms of ACNs against various diseases.


2020 ◽  
Vol 24 (4) ◽  
pp. 439-464 ◽  
Author(s):  
Rizk E. Khidre ◽  
Tahah A. Ameen ◽  
Mounir A. I. Salem

This review summarizes the synthesis, reactions, and biological activities of tetrazolo[1,5-a]quinoline derivatives. These derivatives were synthesized by several methods such as i) from the reaction of 2-chloroquinoline with sodium azide ii) from diazotization 2-hydrazinylquinoline derivatives, and iii) from intramolecular cyclocondensation of 2-azidoarylidenes. Also, the chemical reactions and pharmacological activities of some tetrazoloquinolines such as tetrazolo[1,5-a]quinoline-4-carbaldehyde, 5-chlorotetrazolo[ 1,5-a]quinoline, 4-(chloromethyl)tetrazolo[1,5-a]quinoline, tetrazolo[1,5- a]quinoline-4-carboxylic acid, and 5-azidotetrazolo[1,5-a]quinoline were discussed.


Sign in / Sign up

Export Citation Format

Share Document