scholarly journals Study on the Permeability Evolution and Its Formation Mechanism of Xiaojihan Aquifer Coal Seam under Plastic Flow

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Jingna Guo ◽  
Jiangfeng Liu ◽  
Qiang Li ◽  
Zhanqing Chen

Study on permeability evolution of an aquifer coal seam in Western China is of great significance for preventing water inrush disaster and realizing water-conserving coal mining. The permeability evolution of an aquifer coal seam is related to a loading path closely under plastic flow. In this work, permeability variations of the Xiaojihan water-bearing coal seam and Longde nonwater coal seam are researched using a transient method under plastic flow. The experiment results indicated the following: (1) Under the same axial strain, the permeability, relative residual strain, and confining pressure influence coefficient of Xiaojihan coal specimens all decrease in plastic flow with the increase of loading-unloading times and confining pressure, while the permeability recovery coefficient increases during this process. (2) The permeability of Xiaojihan water-bearing coal specimens decreases with the growth of axial strain in plastic flow, resulting in the increase of relative residual strain and reinforcement of plasticity. Besides, the confining pressure influence coefficient decreases and the permeability recovery coefficient decreases slightly with the axial strain. (3) Finally, the permeability of Xiaojihan coal specimens is greater than that of Longde coal specimens, while the confining pressure influence coefficient and permeability recovery coefficient of Longde coal specimens are greater than those of Xiaojihan coal specimens. The closure rate of internal cracks of the water-bearing coal specimen is lower than that of the nonwater coal specimen, which is beneficial for water storage and transport.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ma Haifeng ◽  
Yao Fanfan ◽  
Niu Xin’gang ◽  
Guo Jia ◽  
Li Yingming ◽  
...  

In order to obtain the mechanical behavior and permeability characteristics of coal under the coupling action of stress and seepage, permeability tests under different confining pressures in the process of deformation and destruction of briquette coal were carried out using the electrohydraulic servo system of rock mechanics. The stress-strain and permeability evolution curves of briquette coal during the whole deformation process were obtained. The mechanical behavior and permeability coefficient evolution response characteristics of briquette coal under stress-seepage coupling are well reflected. Research shows that stress-axial strain curve and the stress-circumferential strain curve have the same change trend, the hoop strain and axial strain effect on the permeability variation law of basic consistent, and the permeability coefficient with the increase of confining pressure and decreases, and the higher the confining pressure, the lower the permeability coefficient, the confining pressure increases rate under the same conditions, and the permeability coefficient corresponding to high confining pressure is far less than that corresponding to low confining pressure. The confining pressure influences the permeability of the briquette by affecting its dilatancy behavior. With the increase of the confining pressure, the permeability of the sample decreases, and the permeability coefficient decreases with the increase of the confining pressure at the initial stage, showing a logarithmic function. After failure, briquette samples show a power function change rule, and the greater the confining pressure is, the more obvious the permeability coefficient decreases.


2021 ◽  
Author(s):  
Yuan-Jian LIN ◽  
Jiang-Feng LIU ◽  
Tao CHEN ◽  
Shi-Jia MA ◽  
Pei-Lin WANG ◽  
...  

Abstract In this paper, a THMC multi-field coupling triaxial cell was used to systematically study the evolution of gas permeability and the deformation characteristics of sandstone. The effects of confining pressure, axial pressure and air pressure on gas permeability characteristics were fully considered in the test. The gas permeability of sandstone decreases with increasing confining pressure. When the confining pressure is low, the variation of gas permeability is greater than the variation of gas permeability at high confining pressure. The gas injection pressure has a significant effect on the gas permeability evolution of sandstone. As the gas injection pressure increases, the gas permeability of sandstone tends to decrease. At the same confining pressure, the gas permeability of the sample during the unloading path is less than the gas permeability of the sample in the loading path. When axial pressure is applied, the axial stress has a significant influence on the permeability evolution of sandstone. When the axial pressure is less than 30 MPa, the gas permeability of the sandstone increases as the axial pressure increases. At axial pressures greater than 30 MPa, the permeability decreases as the axial pressure increases. Finally, the micro-pore/fracture structure of the sample after the gas permeability test was observed using 3D X-ray CT imaging.


2019 ◽  
Vol 23 (3 Part A) ◽  
pp. 1487-1494 ◽  
Author(s):  
Jingna Guo ◽  
Jiangfeng Liu ◽  
Qiang Li ◽  
Chen Xu ◽  
Zhanqing Chen ◽  
...  

In the excavation process, the coal pillar will undergo shear failure due to repeated loading and unloading from mining stress. Meanwhile, plastic flow will occur after shear failure. The permeability change of the coal pillar under plastic flow is closely related to the loading path. Through a permeability test of the coal sample after shear yielding under cyclic loading and unloading conditions, the variation law of permeability of a coal seam under plastic flow was obtained. The results show that the permeability of the coal sample increases as the axial strain decreases during the unloading phase. During the loading phase, as the axial strain increases, the permeability of the coal sample decreases. Scanning electron microscope tests show that the crack opening is larger at lower confining pressures. As the confining pressure increases, the crack opening decreases and moves toward the middle of the sample.


Solid Earth ◽  
2017 ◽  
Vol 8 (2) ◽  
pp. 561-581 ◽  
Author(s):  
Jamie I. Farquharson ◽  
Patrick Baud ◽  
Michael J. Heap

Abstract. Active volcanoes are mechanically dynamic environments, and edifice-forming material may often be subjected to significant amounts of stress and strain. It is understood that porous volcanic rock can compact inelastically under a wide range of in situ conditions. In this contribution, we explore the evolution of porosity and permeability – critical properties influencing the style and magnitude of volcanic activity – as a function of inelastic compaction of porous andesite under triaxial conditions. Progressive axial strain accumulation is associated with progressive porosity loss. The efficiency of compaction was found to be related to the effective confining pressure under which deformation occurred: at higher effective pressure, more porosity was lost for any given amount of axial strain. Permeability evolution is more complex, with small amounts of stress-induced compaction ( <  0.05, i.e. less than 5 % reduction in sample length) yielding an increase in permeability under all effective pressures tested, occasionally by almost 1 order of magnitude. This phenomenon is considered here to be the result of improved connectivity of formerly isolated porosity during triaxial loading. This effect is then overshadowed by a decrease in permeability with further inelastic strain accumulation, especially notable at high axial strains ( >  0.20) where samples may undergo a reduction in permeability by 2 orders of magnitude relative to their initial values. A physical limit to compaction is discussed, which we suggest is echoed in a limit to the potential for permeability reduction in compacting volcanic rock. Compiled literature data illustrate that at high axial strain (both in the brittle and ductile regimes), porosity ϕ and permeability k tend to converge towards intermediate values (i.e. 0.10  ≤ ϕ ≤  0.20; 10−14 ≤ k ≤ 10−13 m2). These results are discussed in light of their potential ramifications for impacting edifice outgassing – and in turn, eruptive activity – in active volcanoes.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Kangwu Feng ◽  
Kequan Wang ◽  
Yushun Yang

The effects of confining pressure and pore pressure on the deformation and permeability characteristics of raw coal are studied experimentally. The deformation properties of raw coal by fracture and its permeability evolution laws under the coupling effect of confining pressure and pore pressure were further studied using a tri-axial servo-controlled seepage system for thermo-fluid-solid coupling of methane-bearing coal. The effects of confining pressure and gas pressure on the strength, elastic modulus, and permeability of raw coal were also analyzed. From the results, it was observed that rise in the confining pressure results in reduction of the initial permeability of raw coal and simultaneously increase its strength which results in higher axial deformation upon failure. Rise in gas pressure would increase the permeability and axial strain of raw coal on the whole and reduce its peak strength. Permeability first decreased and then increased during the loading of deviator stress, following a “V-shaped” change pattern. The results of sensitivity analysis indicated that confining pressure more significantly affected the peak strength and elastic modulus than gas pressure, while the gas pressure more significantly affected the permeability of the material than its confining pressure.


2022 ◽  
Author(s):  
Yuan-Jian LIN ◽  
Jiang-Feng LIU ◽  
Tao CHEN ◽  
Bing-Xiang HUANG ◽  
Kundwa Marie Judith ◽  
...  

Abstract In this paper, a THMC (Thermal-Hydrological-Mechanical-Chemical) multi-field coupling triaxial cell was used to systematically study the evolution of gas permeability and the deformation characteristics of sandstone. The effects of confining pressure, axial pressure, and air pressure on gas permeability characteristics were fully considered in the test. The gas permeability of sandstone decreases with increasing confining pressure. When the confining pressure is low, the variation of gas permeability is greater than the variation of gas permeability at high confining pressure. The gas injection pressure has a significant effect on the gas permeability evolution of sandstone. As the gas injection pressure increases, the gas permeability of sandstone tends to decrease. At the same confining pressure, the gas permeability of the sample during the unloading path is less than the gas permeability of the sample in the loading path. When axial pressure is applied, it has a significant influence on the permeability evolution of sandstone. When the axial pressure is less than 30 MPa, the gas permeability of the sandstone increases as the axial pressure increases. At axial pressures greater than 30 MPa, the permeability decreases as the axial pressure increases. Finally, the micro-pore/fracture structure of the sample after the gas permeability test was observed using 3D X-ray CT imaging.


2018 ◽  
Vol 4 (4) ◽  
pp. 755
Author(s):  
Lei Sun

The effect of variable confining pressure (VCP) on the cyclic deformation and cyclic pore water pressure in K0-consolidated saturated soft marine clay were investigated with the help of the cyclic stress-controlled advanced dynamic triaxial test in undrained condition. The testing program encompassed three cyclic deviator stress ratios, CSR=0.189, 0.284 and 0.379 and three stress path inclinations ηampl=3,1 and 0.64. All tests with constant confining pressure (CCP) and variable confining pressure (VCP) have identical initial stress and average stress. The results were analyzed in terms of the accumulative normalized excess pore water pressure rqu recorded at the end of each stress cycle and permanent axial strain, as well as resilient modulus. Limited data suggest that these behavior are significantly affected by both of the VCP and CSR. For a given value of VCP, both of the pore water pressure rqu and permanent axial strains are consistently increase with the increasing values of CSR. However, for a given value of CSR, the extent of the influence of VCP and the trend is substantially depend on the CSR.


2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4651-4658
Author(s):  
Teng Teng ◽  
Xiaoyan Zhu ◽  
Yu-Ming Wang ◽  
Chao-Yang Ren

Gas-flow in coal or rock is hypersensitive to the changes of temperature, confin?ing pressure and gas pressure. This paper implemented a series of experiments to observe the seepage behavior, especially the permeability evolution of CO2 in naturally fractured coal sample under coupled hydro-thermal-mechanical conditions. The experimental results show that coal permeability increases exponentially with the increasing gas pressure, and tends to be linear when the confining pressure is high. Coal permeability decreases exponentially with the increasing confining pressure. Coal permeability decreases with the increasing temperature generally, but it may bounce up when the temperature rises to high. The results provide reference for the projects of coal gas extraction and carbon dioxide geological sequestration.


Sign in / Sign up

Export Citation Format

Share Document