scholarly journals Experimental Study on the Deformation and Permeability Characteristics of Raw Coal under the Coupling Effect of Confining Pressure and Pore Pressure

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Kangwu Feng ◽  
Kequan Wang ◽  
Yushun Yang

The effects of confining pressure and pore pressure on the deformation and permeability characteristics of raw coal are studied experimentally. The deformation properties of raw coal by fracture and its permeability evolution laws under the coupling effect of confining pressure and pore pressure were further studied using a tri-axial servo-controlled seepage system for thermo-fluid-solid coupling of methane-bearing coal. The effects of confining pressure and gas pressure on the strength, elastic modulus, and permeability of raw coal were also analyzed. From the results, it was observed that rise in the confining pressure results in reduction of the initial permeability of raw coal and simultaneously increase its strength which results in higher axial deformation upon failure. Rise in gas pressure would increase the permeability and axial strain of raw coal on the whole and reduce its peak strength. Permeability first decreased and then increased during the loading of deviator stress, following a “V-shaped” change pattern. The results of sensitivity analysis indicated that confining pressure more significantly affected the peak strength and elastic modulus than gas pressure, while the gas pressure more significantly affected the permeability of the material than its confining pressure.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xue-bo Zhang ◽  
Wen-yuan Wang ◽  
Ming Yang ◽  
Hang-hang Cai ◽  
Jia-jia Liu ◽  
...  

To explore the mechanical failure and permeability characteristics of porous gas-bearing coal under triaxial stress, the triaxial compression experiment was carried out for porous and conventional gas-bearing coal samples based on the triaxial creep-seepage experiment system and sound emission signal acquisition system. Acoustic emission testing was carried out at the same time of loading failure. The experimental results showed that (1) under fixed gas pressure but changing confining pressure, the porous gas-bearing coal sample had higher peak strength and elastic modulus but lower peak strain; under changing gas pressure but fixed confining pressure, the porous gas-bearing coal sample had lower peak strength and peak strain but higher elastic modulus. When either confining pressure or gas pressure was changed, the mechanical properties of the two kinds of gas-bearing coal samples showed a good consistency, but the mechanical parameters differed greatly, with the peak strength, peak strain, and elastic modulus of porous coal samples are reduced by 1/4, 2/3, and 3/4, respectively. (2) When either the confining pressure or gas pressure was changed, the permeability of the porous gas-bearing coal sample was larger than that of the conventional gas-bearing coal sample. However, the change rules of permeability characteristics of the two were basically the same, except that there was a large difference in permeability value that the porous gas-bearing coal sample increases nearly twice as much as that of the conventional gas-bearing coal sample. (3) In the whole stress-strain process, the acoustic emission characteristics of the porous gas-bearing coal sample differed significantly from those of the conventional gas-bearing coal sample. The maximum ringdown count of the porous gas-bearing coal sample can be reduced by one-third at most, the maximum energy can be reduced by nearly half at most, and the maximum amplitude changes little with only 1–3 dB reduction. The research results have important guiding significance for the prediction of failure and instability of coal tunnel and the development of relevant protective techniques.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ma Haifeng ◽  
Yao Fanfan ◽  
Niu Xin’gang ◽  
Guo Jia ◽  
Li Yingming ◽  
...  

In order to obtain the mechanical behavior and permeability characteristics of coal under the coupling action of stress and seepage, permeability tests under different confining pressures in the process of deformation and destruction of briquette coal were carried out using the electrohydraulic servo system of rock mechanics. The stress-strain and permeability evolution curves of briquette coal during the whole deformation process were obtained. The mechanical behavior and permeability coefficient evolution response characteristics of briquette coal under stress-seepage coupling are well reflected. Research shows that stress-axial strain curve and the stress-circumferential strain curve have the same change trend, the hoop strain and axial strain effect on the permeability variation law of basic consistent, and the permeability coefficient with the increase of confining pressure and decreases, and the higher the confining pressure, the lower the permeability coefficient, the confining pressure increases rate under the same conditions, and the permeability coefficient corresponding to high confining pressure is far less than that corresponding to low confining pressure. The confining pressure influences the permeability of the briquette by affecting its dilatancy behavior. With the increase of the confining pressure, the permeability of the sample decreases, and the permeability coefficient decreases with the increase of the confining pressure at the initial stage, showing a logarithmic function. After failure, briquette samples show a power function change rule, and the greater the confining pressure is, the more obvious the permeability coefficient decreases.


2018 ◽  
Vol 5 (7) ◽  
pp. 180558 ◽  
Author(s):  
Dongming Zhang ◽  
Yushun Yang ◽  
Hao Wang ◽  
Xin Bai ◽  
Chen Ye ◽  
...  

The present experimental study on permeability characteristics for raw coal under different stress states is implemented by applying the triaxial self-made ‘THM coupled with servo-controlled seepage apparatus for gas-containing coal’; the result indicates that the flow rate of gas in the coal sample gradually decreases with the nonlinear loading of axial pressure and increases with the nonlinear unloading of axial stress and confining pressure. The flow rate, axial stress and confining pressure curves all satisfy the negative exponential function relation. When the sample reaches the peak intensity, the sample will be destroyed and the stress will drop rapidly; then the flow rate of the sample will increase rapidly. At this stage, the flow rate and axial strain show an oblique ‘v' pattern. The flow rate of the coal sample increases nonlinearly with the increase of gas pressure; the relation curve between flow rate and gas pressure satisfies the power function relation. Under the same confining pressure and gas pressure conditions, the larger the axial stress, the smaller the flow rate of the coal sample. Under the same axial stress and gas pressure conditions, the flow rate of the coal sample will first decrease, but then increase as the confining pressure decreases. During the post-peak loading and unloading process, the flow rate of the coal sample will decrease with the loading of confining pressure but increase with the unloading of confining pressure, and there will be an increase in wave shape with the increase in axial strain. The flow rate of each loading and unloading confining pressure is higher than that of the previous loading and unloading confining pressure. At the post-peak stage, the relation curve between the flow rate of the coal sample and the confining pressure satisfies the power function relation in the process of loading and unloading confining pressure.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Xi Chen ◽  
Wei Wang ◽  
Yajun Cao ◽  
Qizhi Zhu ◽  
Weiya Xu ◽  
...  

The study on hydromechanical coupling properties of rocks is of great importance for rock engineering. It is closely related to the stability analysis of structures in rocks under seepage condition. In this study, a series of conventional triaxial tests under drained condition and hydrostatic compression tests under drained or undrained condition on sandstones were conducted. Moreover, complex cyclic loading and unloading tests were also carried out. Based on the experimental results, the following conclusions were obtained. For conventional triaxial tests, the elastic modulus, peak strength, crack initiation stress, and expansion stress increase with increased confining pressure. Pore pressure weakened the effect of the confining pressure under drained condition, which led to a decline in rock mechanical properties. It appeared that cohesion was more sensitive to pore pressure than to the internal friction angle. For complex loading and unloading cyclic tests, in deviatoric stress loading and unloading cycles, elastic modulus increased obviously in first loading stage and increased slowly in next stages. In confining pressure loading and unloading cycles, the Biot coefficient decreased first and then increased, which indicates that damage has a great impact on the Biot coefficient.


2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4651-4658
Author(s):  
Teng Teng ◽  
Xiaoyan Zhu ◽  
Yu-Ming Wang ◽  
Chao-Yang Ren

Gas-flow in coal or rock is hypersensitive to the changes of temperature, confin?ing pressure and gas pressure. This paper implemented a series of experiments to observe the seepage behavior, especially the permeability evolution of CO2 in naturally fractured coal sample under coupled hydro-thermal-mechanical conditions. The experimental results show that coal permeability increases exponentially with the increasing gas pressure, and tends to be linear when the confining pressure is high. Coal permeability decreases exponentially with the increasing confining pressure. Coal permeability decreases with the increasing temperature generally, but it may bounce up when the temperature rises to high. The results provide reference for the projects of coal gas extraction and carbon dioxide geological sequestration.


10.6036/10055 ◽  
2021 ◽  
Vol 96 (3) ◽  
pp. 309-315
Author(s):  
Lijie Long ◽  
Dongyan Liu ◽  
Dong Wang ◽  
Jin Li

ABSTRACT: The deformation and fracture of rock mass in deep rock mass engineering are affected by the coupling of temperature, seepage, and stress. A test and a calculation model for sandstone under thermal–hydrological–mechanical (THM) coupling were proposed to reveal the mechanical properties of sandstone. The law of coupling for mechanical indicators of sandstone was established by laboratory tests and numerical simulations. The permeability, peak strength, peak strain, residual strength, elastic modulus, plastic deformation area, and stress–strain cloud diagram were analyzed by the steady state seepage method and THM coupling principle, and the accuracy of the model was verified. Results demonstrate that: (1) As the temperature rises and the peak deformation increases, the sample slowly drops to the residual strength level after the peak stress. (2) The main factor that affects peak strength is confining pressure. In the temperature range of 25 °C–50 °C, the maximum peak strength and peak deformation are increased by heating, and the increases in confining pressure and temperature reduce the reduction coefficient of the residual strength. Moreover, the elastic modulus increases with the increase in confining pressure, but it shows a downward trend when the temperature increases. (3) The plastic deformation zone and stress–strain cloud diagram indicated that when the temperature and osmotic pressure increase, the specimen enters the plastic zone earlier, the effective plastic zone increases, the stress increases, and the deformation is intensified. The proposed method provides a certain reference for the permeability and stability evaluation of rock mass under the conditions of “three-high” (high confining pressure, high hydraulic pressure, and high stress) engineering. Keywords: temperature–seepage–stress coupling, sandstone, mechanical properties


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yongxiang Zheng ◽  
Jianjun Liu ◽  
Yichen Liu ◽  
Di Shi ◽  
Bohu Zhang

The permeability of shale is extremely low. Therefore, the shale reservoir needs fracturing. The fracture network by fracturing can increase the permeability in a stimulated shale reservoir. To understand the permeability evolution in the stimulated shale reservoir, this study measured the permeability of intact and fractured shale samples with different pore pressure and confining pressure by the transient pulse test. And the differences between the two kinds of samples in permeability were analyzed. The results show that permeability magnitude of fractured shale is increased by 5 orders compared to the intact shale. It means that fracture networks after fracturing can effectively improve the permeability. Besides, the change in matrix permeability is the result of the combined effect of slippage effect and matrix deformation. At low pore pressure, the influence of slippage effect is more significant. Based on the results, an improved exponential function was established to describe the relationship between permeability and effective stress of shale matrix. Moreover, the permeability of fractured shale is still bigger than that of the shale matrix when the confining pressure is larger than pore pressure. This paper provides theoretical guidance for studying the evolution of reservoir permeability before and after fracturing.


2012 ◽  
Vol 616-618 ◽  
pp. 190-196
Author(s):  
Deng Ke Wang ◽  
Jian Ping Wei ◽  
Le Wei ◽  
Heng Jie Qin

A large number of laboratory experiments on the gas seepage characteristics by the self-developed gas-bearing coal triaxial compression experimental system and conducts the comparative analysis of the similarities and differences of the permeability among CO2, CH4 and N2. The results show that given the condition of constant gas pressure, the permeability of the coal sample decreases with the increase of the confining pressure; under the constant confining pressure, the permeability of the coal sample decreases with the increase of the gas pressure; gases of different adsorbabilities have different permeabilities. The stronger the gas adsorption is, the worse its permeability will be; in the axial loading case, the permeabilities of different gases all reduce firstly and increase afterward, showing the generally V-shaped variation law. The results are of certain theoretical values on the in-depth understanding of the migration law of the gas in coal seams.


2021 ◽  
Author(s):  
Haopeng Jiang ◽  
Annan Jiang ◽  
Fengrui Zhang

Abstract Rock masses in underground space usually experience the coupling of high-temperature field, stress field and seepage field, which gives them complex mechanical behavior and permeability characteristics. In order to study the mechanical properties and permeability characteristics of red sandstone under different temperature environments, a seepage test under high temperature and triaxial compression is carried out based on the RLW-2000 multi-field coupling tester. The results show that the plastic flow of red sandstone at the stress peak under the same temperature is more obvious with the increase of confining pressure. In addition, as the confining pressure gradient increases, the permeability decreases and the trend becomes slower. And the higher the operating temperature, the easier to produce seepage channels inside the rock sample. The development of fissures is rapidly developed under the effect of temperature, so the seepage channels are widened and increased, and the permeability is greatly increased. The constitutive model of rock statistical damage considering the interaction of high temperature and osmotic pressure was constructed based on the experimental data and combining theoretical methods to reveal the characteristics of permeability evolution induced by thermal damage of rocks. The research results can be used as a reference for monitoring rock stability during geological engineering projects involving thermal-seepage-stress coupling conditions.


2019 ◽  
Vol 9 (11) ◽  
pp. 2369 ◽  
Author(s):  
Jie Yang ◽  
Xin Cai ◽  
Xing-Wen Guo ◽  
Jin-Lei Zhao

Knowing the deformation properties of cemented sand and gravel (CSG) material can help construct reasonable constitutive models for the material, which can be used to simulate the structural performance of various practical projects including CSG dams. In this study, to investigate the effect of cement content on the deformation properties of CSG material, we employ triaxial compressive tests for cement contents of 20, 40, 60, 80, and 100 kg/m3 with a confining pressure range of 0.3–1.2 MPa, and theoretically analyze the results by the regression analysis prediction method. Here, we show that both cement content and confining pressure influence the deformation properties of CSG material: for an increase in cement content, the failure strain decreases and brittleness of CSG material increases; the initial modulus of the CSG material increased exponentially with increasing cement content or confining pressure; the peak volumetric strain and its corresponding axial strain increase linearly with increasing confining pressures, which decrease with increasing cement content; the initial tangent volumetric ratio can also be determined by the peak volumetric strain and its corresponding axial strain.


Sign in / Sign up

Export Citation Format

Share Document